Snak Starknet 智能代理
STDIO基于Starknet的AI智能代理引擎
基于Starknet的AI智能代理引擎
A Agent Engine for creating powerful and secure AI Agents powered by Starknet. Available as both an NPM package and a ready-to-use backend.
git clone https://github.com/kasarlabs/snak.git cd snak pnpm install
.env
file by copying .env.example
:cp .env.example .env
Then, fill in the necessary values in your .env
file:
# --- Starknet configuration (mandatory) --- STARKNET_PUBLIC_ADDRESS="YOUR_STARKNET_PUBLIC_ADDRESS" STARKNET_PRIVATE_KEY="YOUR_STARKNET_PRIVATE_KEY" STARKNET_RPC_URL="YOUR_STARKNET_RPC_URL" # --- AI Model API Keys (mandatory) --- # Add the API keys for the specific AI providers you use in config/models/default.models.json # The agent will automatically load the correct key based on the provider name. # Example for OpenAI: OPENAI_API_KEY="YOUR_OPENAI_API_KEY" # (e.g., sk-...) # Example for Anthropic: ANTHROPIC_API_KEY="YOUR_ANTHROPIC_API_KEY" # (e.g., sk-ant-...) # Example for Google Gemini: GEMINI_API_KEY="YOUR_GEMINI_API_KEY" # Example for DeepSeek: DEEPSEEK_API_KEY="YOUR_DEEPSEEK_API_KEY" # Note: You do not need an API key if using a local Ollama model. # --- General Agent Configuration (mandatory) --- SERVER_API_KEY="YOUR_SERVER_API_KEY" # A secret key for your agent server API SERVER_PORT="3001" # --- PostgreSQL Database Configuration (mandatory) --- POSTGRES_USER="admin" POSTGRES_PASSWORD="admin" POSTGRES_ROOT_DB="postgres" # Database used to create/manage the application database POSTGRES_HOST="localhost" POSTGRES_PORT="5454" # --- LangSmith Tracing (Optional) --- # Set LANGSMITH_TRACING=true to enable tracing LANGSMITH_TRACING=false LANGSMITH_ENDPOINT="https://api.smith.langchain.com" LANGSMITH_API_KEY="YOUR_LANGSMITH_API_KEY" # (Only needed if LANGSMITH_TRACING=true) LANGSMITH_PROJECT="Snak" # (Optional project name for LangSmith) # --- Node Environment --- NODE_ENV="development" # "development" or "production"
Configure AI Models (Optional):
The config/models/default.models.json
file defines the default AI models used for different tasks (fast
, smart
, cheap
). You can customize this file or create new model configurations (e.g., my_models.json
) and specify them when running the agent. See config/models/example.models.json
for the structure.
The agent uses the provider
field in the model configuration to determine which API key to load from the .env
file (e.g., if provider
is openai
, it loads OPENAI_API_KEY
).
Create your agent configuration file (e.g., default.agent.json
or my_agent.json
) in the config/agents/
directory:
{ "name": "Your Agent name", "group": "Your Agent group", "description": "Your AI Agent Description", "lore": ["Some lore of your AI Agent 1", "Some lore of your AI Agent 1"], "objectives": [ "first objective that your AI Agent need to follow", "second objective that your AI Agent need to follow" ], "knowledge": [ "first knowledge of your AI Agent", "second knowledge of your AI Agent" ], "interval": "Your agent interval beetween each transaction of the Agent in ms,", "chatId": "Your Agent Chat-id for isolating memory", "maxIterations": "The number of iterations your agent will execute before stopping", "mode": "The mode of your agent, can be interactive, autonomous or hybrid", "memory": { "enabled": "true or false to enable or disable memory", "shortTermMemorySize": "The number of messages your agent will remember" }, "plugins": ["Your first plugin", "Your second plugin"], "mcpServers": { "nxp_server_example": { "command": "npx", "args": ["-y", "@npm_package_example/npx_server_example"], "env": { "API_KEY": "YOUR_API_KEY" } }, "local_server_example": { "command": "node", "args": ["node /path/to/local_server/dist/index.js"] } } }
You can simply create your own agent configuration using our tool on snakagent
Run the promt:
# start with the default.agent.json pnpm run start # start with your custom configuration pnpm run start --agent="name_of_your_config.json" --models="name_of_your_config.json"
Run the server :
# start with the default.agent.json pnpm run start:server # start with your custom configuration pnpm run start:server --agent="name_of_your_config.json" --models="name_of_your_config.json"
Interactive Mode | Autonomous Mode | |
---|---|---|
Prompt Mode | ✅ | ✅ |
Server Mode | ✅ | ✅ |
#using npm npm install @snakagent # using pnpm pnpm add @snakagent
import { SnakAgent } from 'starknet-agent-kit'; const agent = new SnakAgent({ provider: new RpcProvider({ nodeUrl: process.env.STARKNET_RPC_URL }), accountPrivateKey: process.env.STARKNET_PRIVATE_KEY, accountPublicKey: process.env.STARKNET_PUBLIC_ADDRESS, aiModel: process.env.AI_MODEL, aiProvider: process.env.AI_PROVIDER, aiProviderApiKey: process.env.AI_PROVIDER_API_KEY, signature: 'key', agentMode: 'interactive', agentconfig: y, }); const response = await agent.execute("What's my ETH balance?");
To learn more about actions you can read this doc section. A comprehensive interface in the Kit will provide an easy-to-navigate catalog of all available plugins and their actions, making discovery and usage simpler.
To add actions to your agent you can easily follow the step-by-steps guide here
Contributions are welcome! Feel free to submit a Pull Request.
MIT License - see the LICENSE file for details.
For detailed documentation visit docs.kasar.io