Python代码图提取器
STDIO提取分析Python代码结构和导入关系
提取分析Python代码结构和导入关系
This MCP (Model Context Protocol) server provides tools for extracting and analyzing Python code structures, focusing on import/export relationships between files. This is a lightweight implementation that doesn't require an agent system, making it easy to integrate into any Python application.
get_python_code
ToolThe server exposes a powerful code extraction tool that:
# Clone the repository git clone https://github.com/yourusername/python-mcp-new.git cd python-mcp-new # Create a virtual environment python -m venv venv source venv/bin/activate # On Windows, use: venv\Scripts\activate # Install dependencies pip install -r requirements.txt
Create a .env
file based on the provided .env.example
:
# Token limit for extraction
TOKEN_LIMIT=8000
To configure this MCP server for use in MCP-compatible clients (like Codeium Windsurf), add the following configuration to your client's MCP config file:
{ "mcpServers": { "python-code-explorer": { "command": "python", "args": [ "/path/to/python-mcp-new/server.py" ], "env": { "TOKEN_LIMIT": "8000" } } } }
Replace /path/to/python-mcp-new/server.py
with the absolute path to the server.py file on your system.
You can also customize the environment variables:
TOKEN_LIMIT
: Maximum token limit for code extraction (default: 8000)from agent import get_python_code # Get Python code structure for a specific file result = get_python_code( target_file="/home/user/project/main.py", root_repo_path="/home/user/project" # Optional, defaults to target file directory ) # Process the result target_file = result["target_file"] print(f"Main file: {target_file['file_path']}") print(f"Docstring: {target_file['docstring']}") # Display related files for ref_file in result["referenced_files"]: print(f"Related file: {ref_file['file_path']}") print(f"Object: {ref_file['object_name']}") print(f"Type: {ref_file['object_type']}") # See if we're close to the token limit print(f"Token usage: {result['token_count']}/{result['token_limit']}")
{ "target_file": { "file_path": "main.py", "code": "import os\nimport sys\nfrom utils.helpers import format_output\n\ndef main():\n args = sys.argv[1:]\n if not args:\n print('No arguments provided')\n return\n \n result = format_output(args[0])\n print(result)\n\nif __name__ == '__main__':\n main()", "type": "target", "docstring": "" }, "referenced_files": [ { "file_path": "utils/helpers.py", "object_name": "format_output", "object_type": "function", "code": "def format_output(text):\n \"\"\"Format the input text for display.\"\"\"\n if not text:\n return ''\n return f'Output: {text.upper()}'\n", "docstring": "Format the input text for display.", "truncated": false } ], "additional_files": [ { "file_path": "config.py", "code": "# Configuration settings\n\nDEBUG = True\nVERSION = '1.0.0'\nMAX_RETRIES = 3\n", "type": "related_by_directory", "docstring": "Configuration settings for the application." } ], "total_files": 3, "token_count": 450, "token_limit": 8000 }
from agent import handle_mcp_request import json # List available tools list_request = { "jsonrpc": "2.0", "id": 1, "method": "tools/list" } response = handle_mcp_request(list_request) print(json.dumps(response, indent=2))
{ "jsonrpc": "2.0", "id": 1, "result": { "tools": [ { "name": "get_python_code", "description": "Return the code of a target Python file and related files based on import/export proximity.", "inputSchema": { "type": "object", "properties": { "target_file": { "type": "string", "description": "Path to the Python file to analyze." }, "root_repo_path": { "type": "string", "description": "Root directory of the repository. If not provided, the directory of the target file will be used." } }, "required": ["target_file"] } } ] } }
from agent import handle_mcp_request import json # Call the get_python_code tool tool_request = { "jsonrpc": "2.0", "id": 2, "method": "tools/call", "params": { "name": "get_python_code", "arguments": { "target_file": "/home/user/project/main.py", "root_repo_path": "/home/user/project" # Optional } } } response = handle_mcp_request(tool_request) print(json.dumps(response, indent=2))
{ "jsonrpc": "2.0", "id": 2, "result": { "content": [ { "type": "text", "text": "Python code analysis for /home/user/project/main.py" }, { "type": "resource", "resource": { "uri": "resource://python-code/main.py", "mimeType": "application/json", "data": { "target_file": { "file_path": "main.py", "code": "import os\nimport sys\nfrom utils.helpers import format_output\n\ndef main():\n args = sys.argv[1:]\n if not args:\n print('No arguments provided')\n return\n \n result = format_output(args[0])\n print(result)\n\nif __name__ == '__main__':\n main()", "type": "target", "docstring": "" }, "referenced_files": [ { "file_path": "utils/helpers.py", "object_name": "format_output", "object_type": "function", "code": "def format_output(text):\n \"\"\"Format the input text for display.\"\"\"\n if not text:\n return ''\n return f'Output: {text.upper()}'\n", "docstring": "Format the input text for display.", "truncated": false } ], "additional_files": [ { "file_path": "config.py", "code": "# Configuration settings\n\nDEBUG = True\nVERSION = '1.0.0'\nMAX_RETRIES = 3\n", "type": "related_by_directory", "docstring": "Configuration settings for the application." } ], "total_files": 3, "token_count": 450, "token_limit": 8000 } } } ], "isError": false } }
from agent import handle_mcp_request # Call with invalid file path faulty_request = { "jsonrpc": "2.0", "id": 3, "method": "tools/call", "params": { "name": "get_python_code", "arguments": { "target_file": "/path/to/nonexistent.py" } } } response = handle_mcp_request(faulty_request) print(json.dumps(response, indent=2))
{ "jsonrpc": "2.0", "id": 3, "result": { "content": [ { "type": "text", "text": "Error processing Python code: No such file or directory: '/path/to/nonexistent.py'" } ], "isError": true } }
Run the tests to verify functionality:
python -m unittest discover tests
get_python_code
function and custom MCP protocol handlersCodeGrapher
class for Python code analysisThe get_python_code
tool returns a structured JSON object with the following fields:
Field | Type | Description |
---|---|---|
target_file | Object | Information about the target Python file |
referenced_files | Array | List of objects imported by the target file |
additional_files | Array | Additional context files from the same directory |
total_files | Number | Total number of files included in the response |
token_count | Number | Approximate count of tokens in all included code |
token_limit | Number | Maximum token limit configured for extraction |
Field | Type | Description |
---|---|---|
file_path | String | Relative path to the file from the repository root |
code | String | Complete source code of the file |
type | String | Always "target" |
docstring | String | Module-level docstring if available |
Field | Type | Description |
---|---|---|
file_path | String | Relative path to the file |
object_name | String | Name of the imported object (class, function, etc.) |
object_type | String | Type of the object ("class", "function", etc.) |
code | String | Source code of the specific object |
docstring | String | Docstring of the object if available |
truncated | Boolean | Whether the code was truncated due to token limits |
Field | Type | Description |
---|---|---|
file_path | String | Relative path to the file |
code | String | Complete source code of the file |
type | String | Type of relation (e.g., "related_by_directory") |
docstring | String | Module-level docstring if available |
This project now includes a full-featured Model Context Protocol (MCP) server built with the official Python MCP SDK. The server exposes our code extraction functionality in a standardized way that can be used with any MCP client, including Claude Desktop.
# Start the server with default settings python run_server.py # Specify a custom name python run_server.py --name "My Code Explorer" # Use a specific .env file python run_server.py --env-file .env.production
With the MCP SDK installed, you can run the server in development mode using the MCP CLI:
# Install the MCP CLI pip install "mcp[cli]" # Start the server in development mode with the Inspector UI mcp dev server.py
This will start the MCP Inspector, a web interface for testing and debugging your server.
You can install the server into Claude Desktop to access your code exploration tools directly from Claude:
# Install the server in Claude Desktop mcp install server.py # With custom configuration mcp install server.py --name "Python Code Explorer" -f .env
For custom deployments, you can use the MCP server directly:
from server import mcp # Configure the server mcp.name = "Custom Code Explorer" # Run the server mcp.run()
You can use the MCP Python SDK to connect to the server programmatically. See the provided example in examples/mcp_client_example.py
:
from mcp.client import Client, Transport # Connect to the server client = Client(Transport.subprocess(["python", "server.py"])) client.initialize() # List available tools for tool in client.tools: print(f"Tool: {tool.name}") # Use the get_code tool result = client.tools.get_code(target_file="path/to/your/file.py") print(f"Found {len(result['referenced_files'])} referenced files") # Clean up client.shutdown()
Run the example:
python examples/mcp_client_example.py [optional_target_file.py]
You can add additional tools to the MCP server by decorating functions with the @mcp.tool()
decorator in server.py
:
@mcp.tool() def analyze_imports(target_file: str) -> Dict[str, Any]: """Analyze all imports in a Python file.""" # Implementation code here return { "file": target_file, "imports": [], # List of imports found "analysis": "" # Analysis of the imports } @mcp.tool() def find_python_files(directory: str, pattern: str = "*.py") -> list[str]: """Find Python files matching a pattern in a directory.""" from pathlib import Path return [str(p) for p in Path(directory).glob(pattern) if p.is_file()]
You can also add resource endpoints to provide data directly:
@mcp.resource("python_stats://{directory}") def get_stats(directory: str) -> Dict[str, Any]: """Get statistics about Python files in a directory.""" from pathlib import Path stats = { "directory": directory, "file_count": 0, "total_lines": 0, "average_lines": 0 } files = list(Path(directory).glob("**/*.py")) stats["file_count"] = len(files) if files: total_lines = 0 for file in files: with open(file, "r") as f: total_lines += len(f.readlines()) stats["total_lines"] = total_lines stats["average_lines"] = total_lines / len(files) return stats
This project fully embraces the Model Context Protocol (MCP) standard, providing two implementation options:
Native MCP Integration: The original implementation in agent.py
provides a direct JSON-RPC interface compatible with MCP.
MCP SDK Integration: The new implementation in server.py
leverages the official MCP Python SDK for a more robust and feature-rich experience.
This implementation supports MCP Protocol version 0.7.0.
For more information about MCP, refer to the official documentation.