提示词优化器
STDIO专业级MCP提示优化服务器
专业级MCP提示优化服务器
A professional-grade MCP (Model Context Protocol) server that provides cutting-edge prompt optimization tools with research-backed strategies delivering 15-74% performance improvements.
Production-ready templates across 11 domains:
# Clone the repository git clone <repository-url> cd mcp-prompt-optimizer # Create virtual environment (recommended) python3 -m venv venv source venv/bin/activate # On Windows: venv\Scripts\activate # Install dependencies ./install.sh # Or install manually pip install -r requirements.txt # Configure Claude Desktop python3 setup_interactive.py
Add to your Claude Desktop configuration file:
macOS: ~/Library/Application Support/Claude/claude_desktop_config.json
Windows: %APPDATA%\Claude\claude_desktop_config.json
Linux: ~/.config/Claude/claude_desktop_config.json
{ "mcpServers": { "prompt-optimizer": { "command": "python3", "args": ["/path/to/mcp-prompt-optimizer/prompt_optimizer.py"], "env": {} } } }
# Analyze prompt quality "Analyze this prompt: write a blog post about AI" # Apply specific optimization "Optimize this prompt using chain_of_thought: explain machine learning" # Auto-select best strategy "Auto-optimize: help me debug this code" # Get domain template "Get domain template for code_review_checklist"
# Use Tree of Thoughts for complex problems "Apply advanced optimization with tree_of_thoughts: design a microservices architecture" # Use Constitutional AI for safety-critical tasks "Apply advanced optimization with constitutional_ai: create content moderation guidelines" # Use Medprompt for high-accuracy classification "Apply advanced optimization with medprompt: categorize customer support tickets" # List available templates "List all domain templates"
mcp-prompt-optimizer/
├── prompt_optimizer.py      # Main MCP server
├── advanced_strategies.py   # Research-backed optimization strategies
├── domain_templates.py      # Professional domain templates
├── examples.py              # Usage examples and demonstrations
├── setup_interactive.py     # Automated setup script
└── README.md               # This file
# Run basic tests ./test.sh # Run usage examples python3 examples.py
| Strategy | Use Case | Performance Improvement | 
|---|---|---|
| Tree of Thoughts | Complex reasoning | 70-74% success rate | 
| Medprompt | Classification tasks | 90%+ accuracy | 
| Self-Refine | Iterative improvement | 20% per iteration | 
| Constitutional AI | Safety alignment | High compliance | 
| Chain of Thought | Step-by-step tasks | 15-25% improvement | 
| Prompt Type | Recommended Strategy | 
|---|---|
| Complex problems | tree_of_thoughts | 
| Classification tasks | medprompt | 
| Safety-critical | constitutional_ai | 
| Vague requirements | meta_prompting | 
| Needs refinement | self_refine | 
| General optimization | auto | 
We welcome contributions! Please:
advanced_strategies.pydomain_templates.pyexamples.pyMCP not working?
python3 --version (requires 3.8+)./install.sh or pip install -r requirements.txtpip show mcpCommands not recognized?
# Test server directly python3 prompt_optimizer.py # Verbose logging export MCP_LOG_LEVEL=debug python3 prompt_optimizer.py
This project is licensed under the MIT License - see the LICENSE file for details.
If you use this tool in your research or projects, please cite:
@software{mcp_prompt_optimizer, title={MCP Prompt Optimizer: Research-Backed Prompt Optimization for AI Systems}, author={Bubobot}, year={2024}, url={https://github.com/Bubobot-Team/mcp-prompt-optimizer} }
Built with ❤️ for the AI community
For questions, issues, or contributions, please visit our GitHub repository.