icon for mcp server

提示词优化器

STDIO

专业级MCP提示优化服务器

MCP Prompt Optimizer

Python 3.8+ License: MIT MCP Compatible

A professional-grade MCP (Model Context Protocol) server that provides cutting-edge prompt optimization tools with research-backed strategies delivering 15-74% performance improvements.

✨ Features

🎯 Basic Optimization Strategies

  • Clarity: Simplifies prompts for directness and precision
  • Specificity: Adds detailed constraints and requirements
  • Chain of Thought: Incorporates step-by-step reasoning
  • Few-Shot: Includes example formats for guidance
  • Structured Output: Defines clear output organization
  • Role-Based: Adds expert role context

🚀 Advanced Optimization Strategies

  • Tree of Thoughts (ToT): Multi-path reasoning with 74% success rate on complex tasks
  • Constitutional AI: Self-critique and alignment with safety principles
  • Automatic Prompt Engineer (APE): AI-discovered optimal instruction patterns
  • Meta-Prompting: AI generates its own optimized prompts
  • Self-Refine: Iterative improvement with 20% performance gains
  • TEXTGRAD: Natural language feedback as optimization gradients
  • Medprompt: Multi-technique ensemble achieving 90%+ accuracy
  • PromptWizard: Feedback-driven self-evolving prompts

📋 Professional Domain Templates

Production-ready templates across 11 domains:

  • Business Analysis: Competitive analysis frameworks
  • Product Management: User research synthesis
  • Content Creation: Technical blog posts with SEO optimization
  • Development: Comprehensive code review checklists
  • Communication: Stakeholder updates and project reports
  • Strategy: OKR planning frameworks
  • Operations: Standard Operating Procedures (SOPs)
  • Legal: Contract termination and compliance
  • Customer Experience: Feedback surveys and insights
  • Data Analysis: Data insights and reporting
  • Meeting Management: Effective meeting agendas

🛠️ Installation

Quick Setup

# Clone the repository git clone <repository-url> cd mcp-prompt-optimizer # Create virtual environment (recommended) python3 -m venv venv source venv/bin/activate # On Windows: venv\Scripts\activate # Install dependencies ./install.sh # Or install manually pip install -r requirements.txt # Configure Claude Desktop python3 setup_interactive.py

Manual Configuration

Add to your Claude Desktop configuration file:

macOS: ~/Library/Application Support/Claude/claude_desktop_config.json

Windows: %APPDATA%\Claude\claude_desktop_config.json

Linux: ~/.config/Claude/claude_desktop_config.json

{ "mcpServers": { "prompt-optimizer": { "command": "python3", "args": ["/path/to/mcp-prompt-optimizer/prompt_optimizer.py"], "env": {} } } }

🎮 Usage

Basic Commands

# Analyze prompt quality "Analyze this prompt: write a blog post about AI" # Apply specific optimization "Optimize this prompt using chain_of_thought: explain machine learning" # Auto-select best strategy "Auto-optimize: help me debug this code" # Get domain template "Get domain template for code_review_checklist"

Advanced Commands

# Use Tree of Thoughts for complex problems "Apply advanced optimization with tree_of_thoughts: design a microservices architecture" # Use Constitutional AI for safety-critical tasks "Apply advanced optimization with constitutional_ai: create content moderation guidelines" # Use Medprompt for high-accuracy classification "Apply advanced optimization with medprompt: categorize customer support tickets" # List available templates "List all domain templates"

🏗️ Architecture

mcp-prompt-optimizer/
├── prompt_optimizer.py      # Main MCP server
├── advanced_strategies.py   # Research-backed optimization strategies
├── domain_templates.py      # Professional domain templates
├── examples.py              # Usage examples and demonstrations
├── setup_interactive.py     # Automated setup script
└── README.md               # This file

🧪 Testing

# Run basic tests ./test.sh # Run usage examples python3 examples.py

📊 Performance Benchmarks

StrategyUse CasePerformance Improvement
Tree of ThoughtsComplex reasoning70-74% success rate
MedpromptClassification tasks90%+ accuracy
Self-RefineIterative improvement20% per iteration
Constitutional AISafety alignmentHigh compliance
Chain of ThoughtStep-by-step tasks15-25% improvement

🔧 Available Tools

Core Tools

  1. analyze_prompt: Analyzes prompt quality and identifies issues
  2. optimize_prompt: Applies specific optimization strategies
  3. auto_optimize: Automatically selects optimal strategy
  4. get_prompt_template: Returns basic templates

Advanced Tools

  1. advanced_optimize: Applies research-backed strategies
  2. get_domain_template: Returns professional domain templates
  3. list_domain_templates: Lists available templates by domain

🎯 Strategy Selection Guide

Prompt TypeRecommended Strategy
Complex problemstree_of_thoughts
Classification tasksmedprompt
Safety-criticalconstitutional_ai
Vague requirementsmeta_prompting
Needs refinementself_refine
General optimizationauto

🤝 Contributing

We welcome contributions! Please:

  1. Fork the repository
  2. Create a feature branch
  3. Add tests for new functionality
  4. Update documentation
  5. Submit a pull request

Adding New Features

  • New Strategy: Add to advanced_strategies.py
  • New Template: Add to domain_templates.py
  • Examples: Add to examples.py

🐛 Troubleshooting

Common Issues

MCP not working?

  • Check Python version: python3 --version (requires 3.8+)
  • Install dependencies: Run ./install.sh or pip install -r requirements.txt
  • Verify MCP installation: pip show mcp
  • Check Claude Desktop logs
  • Restart Claude Desktop

Commands not recognized?

  • Verify configuration file location
  • Check file paths in configuration
  • Run setup script again

Debug Mode

# Test server directly python3 prompt_optimizer.py # Verbose logging export MCP_LOG_LEVEL=debug python3 prompt_optimizer.py

📄 License

This project is licensed under the MIT License - see the LICENSE file for details.

🙏 Acknowledgments

  • Research from Princeton, Google DeepMind, Microsoft Research
  • Anthropic's Constitutional AI framework
  • Stanford's DSPy framework
  • OpenAI's prompt engineering guidelines

📈 Citation

If you use this tool in your research or projects, please cite:

@software{mcp_prompt_optimizer, title={MCP Prompt Optimizer: Research-Backed Prompt Optimization for AI Systems}, author={Bubobot}, year={2024}, url={https://github.com/Bubobot-Team/mcp-prompt-optimizer} }

Built with ❤️ for the AI community

For questions, issues, or contributions, please visit our GitHub repository.

MCP Now 重磅来袭,抢先一步体验