icon for mcp server

开放深度研究

STDIO

AI驱动的深度研究助手

Open Deep Research MCP Server

An AI-powered research assistant that performs deep, iterative research on any topic. It combines search engines, web scraping, and AI to explore topics in depth and generate comprehensive reports. Available as a Model Context Protocol (MCP) tool or standalone CLI. Look at exampleout.md to see what a report might look like.

Quick Start

  1. Clone and install:
git clone https://github.com/Ozamatash/deep-research cd deep-research npm install
  1. Set up environment in .env.local:
# Copy the example environment file cp .env.example .env.local
  1. Build:
# Build the server npm run build
  1. Run the cli version:
npm run start
  1. Test MCP Server with Claude Desktop:
    Follow the guide thats at the bottom of server quickstart to add the server to Claude Desktop:
    https://modelcontextprotocol.io/quickstart/server

For remote servers: Streamable HTTP

npm run start:http

Server runs on http://localhost:3000/mcp without session management.

Features

  • Performs deep, iterative research by generating targeted search queries
  • Controls research scope with depth (how deep) and breadth (how wide) parameters
  • Evaluates source reliability with detailed scoring (0-1) and reasoning
  • Prioritizes high-reliability sources (≥0.7) and verifies less reliable information
  • Generates follow-up questions to better understand research needs
  • Produces detailed markdown reports with findings, sources, and reliability assessments
  • Available as a Model Context Protocol (MCP) tool for AI agents
  • For now MCP version doesn't ask follow up questions

How It Works

flowchart TB subgraph Input Q[User Query] B[Breadth Parameter] D[Depth Parameter] FQ[Feedback Questions] end subgraph Research[Deep Research] direction TB SQ[Generate SERP Queries] SR[Search] RE[Source Reliability Evaluation] PR[Process Results] end subgraph Results[Research Output] direction TB L((Learnings with Reliability Scores)) SM((Source Metadata)) ND((Next Directions: Prior Goals, New Questions)) end %% Main Flow Q & FQ --> CQ[Combined Query] CQ & B & D --> SQ SQ --> SR SR --> RE RE --> PR %% Results Flow PR --> L PR --> SM PR --> ND %% Depth Decision and Recursion L & ND --> DP{depth > 0?} DP -->|Yes| SQ %% Final Output DP -->|No| MR[Markdown Report] %% Styling classDef input fill:#7bed9f,stroke:#2ed573,color:black classDef process fill:#70a1ff,stroke:#1e90ff,color:black classDef output fill:#ff4757,stroke:#ff6b81,color:black classDef results fill:#a8e6cf,stroke:#3b7a57,color:black,width:150px,height:150px class Q,B,D,FQ input class SQ,SR,RE,PR process class MR output class L,SM,ND results

Advanced Setup

Using Local Firecrawl (Free Option)

Instead of using the Firecrawl API, you can run a local instance. You can use the official repo or my fork which uses searXNG as the search backend to avoid using a searchapi key:

  1. Set up local Firecrawl:
git clone https://github.com/Ozamatash/localfirecrawl cd localfirecrawl # Follow setup in localfirecrawl README
  1. Update .env.local:
FIRECRAWL_BASE_URL="http://localhost:3002"

Optional: Observability

Add observability to track research flows, queries, and results using Langfuse:

# Add to .env.local LANGFUSE_PUBLIC_KEY="your_langfuse_public_key" LANGFUSE_SECRET_KEY="your_langfuse_secret_key"

The app works normally without observability if no Langfuse keys are provided.

License

MIT License

MCP Now 重磅来袭,抢先一步体验