ModelScope
STDIO为AI智能体提供ModelScope模型、数据集和图像生成工具访问的MCP服务器
为AI智能体提供ModelScope模型、数据集和图像生成工具访问的MCP服务器
English | 中文
Empowers AI agents and chatbots with direct access to ModelScope's rich ecosystem of AI resources. From generating images to discovering cutting-edge models, datasets, apps and research papers, this MCP server makes ModelScope's vast collection of tools and services accessible through simple conversational interactions.
For a quick trial or a hosted option, visit the project page on the ModelScope MCP Plaza.
📖 For detailed instructions, refer to the ModelScope Token Documentation
Add the following JSON configuration to your MCP client's configuration file:
{ "mcpServers": { "modelscope-mcp-server": { "command": "uvx", "args": ["modelscope-mcp-server"], "env": { "MODELSCOPE_API_TOKEN": "your-api-token" } } } }
Or, you can use the pre-built Docker image:
{ "mcpServers": { "modelscope-mcp-server": { "command": "docker", "args": [ "run", "--rm", "-i", "-e", "MODELSCOPE_API_TOKEN", "ghcr.io/modelscope/modelscope-mcp-server" ], "env": { "MODELSCOPE_API_TOKEN": "your-api-token" } } } }
Refer to the MCP JSON Configuration Standard for more details.
This format is widely adopted across the MCP ecosystem:
~/.claude/claude_desktop_config.json~/.cursor/mcp.json.vscode/mcp.jsonClone and Setup:
git clone https://github.com/modelscope/modelscope-mcp-server.git cd modelscope-mcp-server uv sync
Activate Environment (or use your IDE):
source .venv/bin/activate # Linux/macOS
Set Your API Token (see Quick Start section for token setup):
export MODELSCOPE_API_TOKEN="your-api-token" # Or create .env file: echo 'MODELSCOPE_API_TOKEN="your-api-token"' > .env
Run a quick demo to explore the server's capabilities:
uv run python demo.py
Use the --full flag for comprehensive feature demonstration:
uv run python demo.py --full
# Standard stdio transport (default) uv run modelscope-mcp-server # Streamable HTTP transport for web integration uv run modelscope-mcp-server --transport http # HTTP/SSE transport with custom port (default: 8000) uv run modelscope-mcp-server --transport [http/sse] --port 8080
For HTTP/SSE mode, connect using a local URL in your MCP client configuration:
{ "mcpServers": { "modelscope-mcp-server": { "url": "http://127.0.0.1:8000/mcp/" } } }
You can also debug the server using the MCP Inspector tool:
# Run in UI mode with stdio transport (can switch to HTTP/SSE in the Web UI as needed) npx @modelcontextprotocol/inspector uv run modelscope-mcp-server # Run in CLI mode with HTTP transport (can do operations across tools, resources, and prompts) npx @modelcontextprotocol/inspector --cli http://127.0.0.1:8000/mcp/ --transport http --method tools/list
# Run all tests uv run pytest # Run specific test file uv run pytest tests/test_search_papers.py # With coverage report uv run pytest --cov=src --cov-report=html
This project uses GitHub Actions for automated CI/CD workflows that run on every push and pull request:
Run the same checks locally before submitting PRs:
# Install and run pre-commit hooks uv run pre-commit install uv run pre-commit run --all-files # Run tests uv run pytest
Monitor CI status in the Actions tab.
This project uses GitHub Actions for automated release management. To create a new release:
Update version using the bump script:
uv run python scripts/bump_version.py [patch|minor|major] # Or set specific version: uv run python scripts/bump_version.py set 1.2.3.dev1
Commit and tag (follow the script's output instructions):
git add src/modelscope_mcp_server/_version.py git commit -m "chore: bump version to v{version}" git tag v{version} && git push origin v{version}
Automated publishing - GitHub Actions will automatically:
We welcome contributions! Please ensure your PRs:
This project is licensed under the Apache License (Version 2.0).