MetaTrader 5
STDIOMetaTrader 5交易平台的MCP服务器
MetaTrader 5交易平台的MCP服务器
A Model Context Protocol (MCP) server for MetaTrader 5, allowing AI assistants to interact with the MetaTrader 5 platform for trading and market data analysis. Documentation
uvx --from mcp-metatrader5-server mt5mcp
git clone https://github.com/Qoyyuum/mcp-metatrader5-server.git cd mcp-metatrader5-server uv sync uv run mt5mcp
The server runs in stdio mode by default for MCP clients like Claude Desktop:
uv run mt5mcp
For testing with HTTP transport, create a .env file:
MT5_MCP_TRANSPORT=http MT5_MCP_HOST=127.0.0.1 MT5_MCP_PORT=8000
Then run:
uv run mt5mcp
The server will start at http://127.0.0.1:8000
uvx (Simplest - No Installation Required) ⭐Add this configuration to your MCP client's config file:
For Claude Desktop (claude_desktop_config.json):
{ "mcpServers": { "mcp-metatrader5-server": { "command": "uvx", "args": [ "--from", "git+https://github.com/Qoyyuum/mcp-metatrader5-server", "mt5mcp" ] } } }
git clone https://github.com/Qoyyuum/mcp-metatrader5-server cd mcp-metatrader5-server
After git cloning the repo, run the following commands:
For MCP JSON format
uv run fastmcp install mcp-json src/mcp_mt5/main.py
For Claude Desktop
uv run fastmcp install claude-desktop src/mcp_mt5/main.py
For Claude Code
uv run fastmcp install claude-code src/mcp_mt5/main.py
For Cursor
uv run fastmcp install cursor src/mcp_mt5/main.py
For Gemini CLI
uv run fastmcp install gemini-cli src/mcp_mt5/main.py
Add this to your claude_desktop_config.json or whatever LLM config file:
{ "mcpServers": { "mcp-metatrader5-server": { "command": "uvx", "args": [ "--from", "mcp-metatrader5-server", "mt5mcp" ] } } }
initialize(): Initialize the MT5 terminallogin(account, password, server): Log in to a trading accountshutdown(): Close the connection to the MT5 terminalget_symbols(): Get all available symbolsget_symbols_by_group(group): Get symbols by groupget_symbol_info(symbol): Get information about a specific symbolget_symbol_info_tick(symbol): Get the latest tick for a symbolcopy_rates_from_pos(symbol, timeframe, start_pos, count): Get bars from a specific positioncopy_rates_from_date(symbol, timeframe, date_from, count): Get bars from a specific datecopy_rates_range(symbol, timeframe, date_from, date_to): Get bars within a date rangecopy_ticks_from_pos(symbol, start_pos, count): Get ticks from a specific positioncopy_ticks_from_date(symbol, date_from, count): Get ticks from a specific datecopy_ticks_range(symbol, date_from, date_to): Get ticks within a date rangeorder_send(request): Send an order to the trade serverorder_check(request): Check if an order can be placed with the specified parameterspositions_get(symbol, group): Get open positionspositions_get_by_ticket(ticket): Get an open position by its ticketorders_get(symbol, group): Get active ordersorders_get_by_ticket(ticket): Get an active order by its tickethistory_orders_get(symbol, group, ticket, position, from_date, to_date): Get orders from historyhistory_deals_get(symbol, group, ticket, position, from_date, to_date): Get deals from history# Initialize MT5 initialize() # Log in to your trading account login(account=123456, password="your_password", server="your_server") # Get available symbols symbols = get_symbols() # Get recent price data for EURUSD rates = copy_rates_from_pos(symbol="EURUSD", timeframe=15, start_pos=0, count=100) # Shut down the connection shutdown()
# Initialize and log in initialize() login(account=123456, password="your_password", server="your_server") # Create an order request request = OrderRequest( action=mt5.TRADE_ACTION_DEAL, symbol="EURUSD", volume=0.1, type=mt5.ORDER_TYPE_BUY, price=mt5.symbol_info_tick("EURUSD").ask, deviation=20, magic=123456, comment="Buy order", type_time=mt5.ORDER_TIME_GTC, type_filling=mt5.ORDER_FILLING_IOC ) # Send the order result = order_send(request) # Shut down the connection shutdown()
The server provides the following resources to help AI assistants understand how to use the MetaTrader 5 API:
mt5://getting_started: Basic workflow for using the MetaTrader 5 APImt5://trading_guide: Guide for placing and managing tradesmt5://market_data_guide: Guide for accessing and analyzing market datamt5://order_types: Information about order typesmt5://order_filling_types: Information about order filling typesmt5://order_time_types: Information about order time typesmt5://trade_actions: Information about trade request actionsThe server provides the following prompts to help AI assistants interact with users:
connect_to_mt5(account, password, server): Connect to MetaTrader 5 and log inanalyze_market_data(symbol, timeframe): Analyze market data for a specific symbolplace_trade(symbol, order_type, volume): Place a trade for a specific symbolmanage_positions(): Manage open positionsanalyze_trading_history(days): Analyze trading historymcp-metatrader5-server/
├── src/
│   └── mcp_mt5/
│       ├── __init__.py      # Entry point with main()
│       ├── main.py          # FastMCP server with all tools
│       └── test_client.py   # Test client for development
├── docs/
│   ├── getting_started.md
│   ├── market_data_guide.md
│   ├── trading_guide.md
│   └── publishing.md
├── .env                     # Environment configuration (create from .env.example)
├── README.md
├── pyproject.toml           # Project metadata (using hatchling)
└── uv.lock                  # Dependency lock file
Using uv (recommended):
uv build
This will create wheel and source distributions in the dist/ directory.
Using uv:
# Build first uv build # Publish to PyPI uv publish # Or publish to TestPyPI first uv publish --publish-url https://test.pypi.org/legacy/
MIT