MariaDB
STDIOOfficialMariaDB数据库管理与向量搜索服务器
MariaDB数据库管理与向量搜索服务器
The MCP MariaDB Server provides a Model Context Protocol (MCP) interface for managing and querying MariaDB databases, supporting both standard SQL operations and advanced vector/embedding-based search. Designed for use with AI assistants, it enables seamless integration of AI-driven data workflows with relational and vector databases.
The MCP MariaDB Server exposes a set of tools for interacting with MariaDB databases and vector stores via a standardized protocol. It supports:
.env files.list_databases
list_tables
database_name (string, required)get_table_schema
database_name (string, required), table_name (string, required)get_table_schema_with_relations
database_name (string, required), table_name (string, required)execute_sql
SELECT, SHOW, DESCRIBE).sql_query (string, required), database_name (string, optional), parameters (list, optional)MCP_READ_ONLY is enabled.create_database
database_name (string, required)Note: These tools are only available when EMBEDDING_PROVIDER is configured. If no embedding provider is set, these tools will be disabled.
create_vector_store
database_name, vector_store_name, model_name (optional), distance_function (optional, default: cosine)delete_vector_store
database_name, vector_store_namelist_vector_stores
database_nameinsert_docs_vector_store
database_name, vector_store_name, documents (list of strings), metadata (optional list of dicts)search_vector_store
database_name, vector_store_name, user_query (string), k (optional, default: 7)The MCP MariaDB Server provides optional embedding and vector store capabilities. These features can be enabled by configuring an embedding provider, or completely disabled if you only need standard database operations.
EMBEDDING_PROVIDER: Set to openai, gemini, huggingface, or leave unset to disableOPENAI_API_KEY: Required if using OpenAI embeddingsGEMINI_API_KEY: Required if using Gemini embeddingsHF_MODEL: Required if using HuggingFace embeddings (e.g., "intfloat/multilingual-e5-large-instruct" or "BAAI/bge-m3")DEFAULT_OPENAI_MODEL, ALLOWED_OPENAI_MODELS)A vector store table has the following columns:
id: Auto-increment primary keydocument: Text of the documentembedding: VECTOR type (indexed for similarity search)metadata: JSON (optional metadata)All configuration is via environment variables (typically set in a .env file):
| Variable | Description | Required | Default | 
|---|---|---|---|
DB_HOST | MariaDB host address | Yes | localhost | 
DB_PORT | MariaDB port | No | 3306 | 
DB_USER | MariaDB username | Yes | |
DB_PASSWORD | MariaDB password | Yes | |
DB_NAME | Default database (optional; can be set per query) | No | |
DB_CHARSET | Character set for database connection (e.g., cp1251) | No | MariaDB default | 
MCP_READ_ONLY | Enforce read-only SQL mode (true/false) | No | true | 
MCP_MAX_POOL_SIZE | Max DB connection pool size | No | 10 | 
EMBEDDING_PROVIDER | Embedding provider (openai/gemini/huggingface) | No | None(Disabled) | 
OPENAI_API_KEY | API key for OpenAI embeddings | Yes (if EMBEDDING_PROVIDER=openai) | |
GEMINI_API_KEY | API key for Gemini embeddings | Yes (if EMBEDDING_PROVIDER=gemini) | |
HF_MODEL | Open models from Huggingface | Yes (if EMBEDDING_PROVIDER=huggingface) | |
ALLOWED_ORIGINS | Comma-separated list of allowed origins | No | Long list of allowed origins corresponding to local use of the server | 
ALLOWED_HOSTS | Comma-separated list of allowed hosts | No | localhost,127.0.0.1 | 
Note that if using 'http' or 'sse' as the transport, configuring authentication is important for security if you allow connections outside of localhost. Because different organizations use different authentication methods, the server does not provide a default authentication method. You will need to configure your own authentication method. Thankfully FastMCP provides a simple way to do this starting with version 2.12.1. See the FastMCP documentation for more information. We have provided an example configuration below.
.env fileWith Embedding Support (OpenAI):
DB_HOST=localhost DB_USER=your_db_user DB_PASSWORD=your_db_password DB_PORT=3306 DB_NAME=your_default_database MCP_READ_ONLY=true MCP_MAX_POOL_SIZE=10 EMBEDDING_PROVIDER=openai OPENAI_API_KEY=sk-... GEMINI_API_KEY=AI... HF_MODEL="BAAI/bge-m3"
Without Embedding Support:
DB_HOST=localhost DB_USER=your_db_user DB_PASSWORD=your_db_password DB_PORT=3306 DB_NAME=your_default_database MCP_READ_ONLY=true MCP_MAX_POOL_SIZE=10
Example Authentication Configuration: This configuration uses external web authentication via GitHub or Google. If you have internal JWT authentication (desired for organizations who manage their own services), you can use the JWT provider instead.
# GitHub OAuth export FASTMCP_SERVER_AUTH=fastmcp.server.auth.providers.github.GitHubProvider export FASTMCP_SERVER_AUTH_GITHUB_CLIENT_ID="Ov23li..." export FASTMCP_SERVER_AUTH_GITHUB_CLIENT_SECRET="github_pat_..." # Google OAuth export FASTMCP_SERVER_AUTH=fastmcp.server.auth.providers.google.GoogleProvider export FASTMCP_SERVER_AUTH_GOOGLE_CLIENT_ID="123456.apps.googleusercontent.com" export FASTMCP_SERVER_AUTH_GOOGLE_CLIENT_SECRET="GOCSPX-..."
.python-version)Clone the repository
Install uv (if not already):
pip install uv
Install dependencies
uv lock uv sync
Create .env in the project root (see Configuration)
Run the server
Standard Input/Output (default):
uv run server.py
SSE Transport:
uv run server.py --transport sse --host 127.0.0.1 --port 9001
HTTP Transport (streamable HTTP):
uv run server.py --transport http --host 127.0.0.1 --port 9001 --path /mcp
{ "tool": "execute_sql", "parameters": { "database_name": "test_db", "sql_query": "SELECT * FROM users WHERE id = %s", "parameters": [123] } }
{ "tool": "create_vector_store", "parameters": { "database_name": "test_db", "vector_store_name": "my_vectors", "model_name": "text-embedding-3-small", "distance_function": "cosine" } }
{ "tool": "insert_docs_vector_store", "parameters": { "database_name": "test_db", "vector_store_name": "my_vectors", "documents": ["Sample text 1", "Sample text 2"], "metadata": [{"source": "doc1"}, {"source": "doc2"}] } }
{ "tool": "search_vector_store", "parameters": { "database_name": "test_db", "vector_store_name": "my_vectors", "user_query": "What is the capital of France?", "k": 5 } }
{ "mcpServers": { "MariaDB_Server": { "command": "uv", "args": [ "--directory", "path/to/mariadb-mcp-server/", "run", "server.py" ], "envFile": "path/to/mcp-server-mariadb-vector/.env" } } }
{ "servers": { "mariadb-mcp-server": { "url": "http://{host}:9001/sse", "type": "sse" } } }
{ "servers": { "mariadb-mcp-server": { "url": "http://{host}:9001/mcp", "type": "streamable-http" } } }
logs/mcp_server.log by default.config.py and logger setup).src/tests/ directory.src/tests/README.md for an overview.