日志分析 SQLite
STDIO用于处理压缩日志的SQLite数据库工具
用于处理压缩日志的SQLite数据库工具
This project provides tools to create an SQLite database from compressed log files and interact with it using the Model Context Protocol (MCP) SQLite server.
python3 -m venv venv source venv/bin/activate pip3 install -r requirements.txt
Place log files in the folder as .gz files, then run:
python3 create_log_db.py
To configure the MCP SQLite server in Cursor-
SQLlite
command
npx -y @smithery/cli@latest run mcp-server-sqlite-npx --config "{\"databasePath\":\"/path/to/thedatbase/logs.db\"}"
create_log_db.py
: Script to extract and parse log files into an SQLite databasequery_logs.py
: Script to directly query the SQLite databaselogs.db
: SQLite database containing parsed log dataThe database contains the following tables:
logs
Tableid
: Unique identifier for each log entrytimestamp
: Timestamp of the log entrythread
: Thread that generated the loglevel
: Log level (INFO, WARN, ERROR, DEBUG)module
: Module that generated the logmessage
: Log message contentsource_file
: Source log fileraw_log
: Raw log entrystack_traces
Tableid
: Unique identifier for each stack tracelog_id
: Reference to the log entry this stack trace belongs tostack_trace
: Full stack trace textparsing_errors
Tableid
: Unique identifier for each parsing errorline
: The line that couldn't be parsedsource_file
: Source log fileerror_message
: Error message explaining why parsing failedtimestamp
: When the parsing error occurredYou can query the database directly using the query_logs.py
script: