
Kubernetes
STDIO支持AI助手通过自然语言操作Kubernetes
支持AI助手通过自然语言操作Kubernetes
The mcp-kubernetes-server
is a server implementing the Model Context Protocol (MCP) to enable AI assistants (such as Claude, Cursor, and GitHub Copilot) to interact with Kubernetes clusters. It acts as a bridge, translating natural language requests from these assistants into Kubernetes operations and returning the results.
It allows AI assistants to:
The mcp-kubernetes-server
acts as an intermediary between AI assistants (that support the Model Context Protocol) and your Kubernetes cluster. It receives natural language requests from these assistants, translates them into kubectl
commands or direct Kubernetes API calls, and executes them against the target cluster. The server then processes the results and returns a structured response, enabling seamless interaction with your Kubernetes environment via the AI assistant.
Before installing mcp-kubernetes-server
, ensure you have the following:
kubeconfig
file correctly configured to access your Kubernetes cluster (the server requires this file for interaction).kubectl
command-line tool installed and in your system's PATH (used by the server to execute many Kubernetes commands).helm
command-line tool installed and in your system's PATH (used by the server for Helm chart operations).uvx
(without Docker).Get your kubeconfig file for your Kubernetes cluster and setup in the mcpServers (replace src path with your kubeconfig path):
{ "mcpServers": { "kubernetes": { "command": "docker", "args": [ "run", "-i", "--rm", "--mount", "type=bind,src=/home/username/.kube/config,dst=/home/mcp/.kube/config", "ghcr.io/feiskyer/mcp-kubernetes-server" ] } } }
To run the server using uvx
(a tool included with uv
, the Python packager), first ensure uv
is installed:
Install uv if it's not installed yet and add it to your PATH, e.g. using curl:
# For Linux and MacOS curl -LsSf https://astral.sh/uv/install.sh | sh
Install kubectl if it's not installed yet and add it to your PATH, e.g.
# For Linux curl -LO "https://dl.k8s.io/release/$(curl -L -s https://dl.k8s.io/release/stable.txt)/bin/linux/amd64/kubectl" # For MacOS curl -LO "https://dl.k8s.io/release/$(curl -L -s https://dl.k8s.io/release/stable.txt)/bin/darwin/arm64/kubectl"
Install helm if it's not installed yet and add it to your PATH, e.g.
curl -sSL https://raw.githubusercontent.com/helm/helm/main/scripts/get-helm-3 | bash
Config your MCP servers in Claude Desktop, Cursor, ChatGPT Copilot, Github Copilot and other supported AI clients, e.g.
{ "mcpServers": { "kubernetes": { "command": "uvx", "args": [ "mcp-kubernetes-server" ], "env": { "KUBECONFIG": "<your-kubeconfig-path>" } } } }
Environment variables:
KUBECONFIG
: Path to your kubeconfig file, e.g. /home/<username>/.kube/config
.Command-line Arguments:
usage: main.py [-h] [--disable-kubectl] [--disable-helm] [--disable-write] [--disable-delete] [--transport {stdio,sse,streamable-http}] [--host HOST] [--port PORT] MCP Kubernetes Server options: -h, --help show this help message and exit --disable-kubectl Disable kubectl command execution --disable-helm Disable helm command execution --disable-write Disable write operations --disable-delete Disable delete operations --transport {stdio,sse,streamable-http} Transport mechanism to use (stdio or sse or streamable-http) --host HOST Host to use for sse or streamable-http server --port PORT Port to use for sse or streamable-http server
Once the mcp-kubernetes-server
is installed and configured in your AI client (using the JSON snippets provided in the 'How to install' section for Docker or UVX), you can start interacting with your Kubernetes cluster through natural language. For example, you can ask:
What is the status of my Kubernetes cluster? What is wrong with my nginx pod?
Verifying the server: If you're running the server with stdio
transport (common for uvx
direct execution), the AI client will typically start and manage the server process. For sse
or streamable-http
transports, the server runs independently. You would have started it manually (e.g., uvx mcp-kubernetes-server --transport sse
) and should see output in your terminal indicating it's running (e.g., INFO: Uvicorn running on http://127.0.0.1:8000 (Press CTRL+C to quit)
). You can also check for any error messages in the server terminal if the AI client fails to connect.
The mcp-kubernetes-server provides a comprehensive set of tools for interacting with Kubernetes clusters, categorized by operation type:
These tools provide general command execution capabilities:
Tool | Description | Parameters |
---|---|---|
kubectl | Run any kubectl command and return the output | command (string) |
helm | Run any helm command and return the output | command (string) |
These tools provide read-only access to Kubernetes resources:
Tool | Description | Parameters |
---|---|---|
k8s_get | Fetch any Kubernetes object (or list) as JSON string | resource (string), name (string), namespace (string) |
k8s_describe | Show detailed information about a specific resource or group of resources | resource_type (string), name (string, optional), namespace (string, optional), selector (string, optional), all_namespaces (boolean, optional) |
k8s_logs | Print the logs for a container in a pod | pod_name (string), container (string, optional), namespace (string, optional), tail (integer, optional), previous (boolean, optional), since (string, optional), timestamps (boolean, optional), follow (boolean, optional) |
k8s_events | List events in the cluster | namespace (string, optional), all_namespaces (boolean, optional), field_selector (string, optional), resource_type (string, optional), resource_name (string, optional), sort_by (string, optional), watch (boolean, optional) |
k8s_apis | List all available APIs in the Kubernetes cluster | none |
k8s_crds | List all Custom Resource Definitions (CRDs) in the Kubernetes cluster | none |
k8s_top_nodes | Display resource usage (CPU/memory) of nodes | sort_by (string, optional) |
k8s_top_pods | Display resource usage (CPU/memory) of pods | namespace (string, optional), all_namespaces (boolean, optional), sort_by (string, optional), selector (string, optional) |
k8s_rollout_status | Get the status of a rollout for a deployment, daemonset, or statefulset | resource_type (string), name (string), namespace (string, optional) |
k8s_rollout_history | Get the rollout history for a deployment, daemonset, or statefulset | resource_type (string), name (string), namespace (string, optional), revision (string, optional) |
k8s_auth_can_i | Check whether an action is allowed | verb (string), resource (string), subresource (string, optional), namespace (string, optional), name (string, optional) |
k8s_auth_whoami | Show the subject that you are currently authenticated as | none |
These tools provide create, update or patch operations to Kubernetes resources:
Tool | Description | Parameters |
---|---|---|
k8s_create | Create a Kubernetes resource from YAML/JSON content | yaml_content (string), namespace (string, optional) |
k8s_apply | Apply a configuration to a resource by filename or stdin | yaml_content (string), namespace (string, optional) |
k8s_expose | Expose a resource as a new Kubernetes service | resource_type (string), name (string), port (integer), target_port (integer, optional), namespace (string, optional), protocol (string, optional), service_name (string, optional), labels (object, optional), selector (string, optional), type (string, optional) |
k8s_run | Create and run a particular image in a pod | name (string), image (string), namespace (string, optional), command (array, optional), env (object, optional), labels (object, optional), restart (string, optional) |
k8s_set_resources | Set resource limits and requests for containers | resource_type (string), resource_name (string), namespace (string, optional), containers (array, optional), limits (object, optional), requests (object, optional) |
k8s_set_image | Set the image for a container | resource_type (string), resource_name (string), container (string), image (string), namespace (string, optional) |
k8s_set_env | Set environment variables for a container | resource_type (string), resource_name (string), container (string), env_dict (object), namespace (string, optional) |
k8s_rollout_undo | Undo a rollout for a deployment, daemonset, or statefulset | resource_type (string), name (string), namespace (string, optional), to_revision (string, optional) |
k8s_rollout_restart | Restart a rollout for a deployment, daemonset, or statefulset | resource_type (string), name (string), namespace (string, optional) |
k8s_rollout_pause | Pause a rollout for a deployment, daemonset, or statefulset | resource_type (string), name (string), namespace (string, optional) |
k8s_rollout_resume | Resume a rollout for a deployment, daemonset, or statefulset | resource_type (string), name (string), namespace (string, optional) |
k8s_scale | Scale a resource | resource_type (string), name (string), replicas (integer), namespace (string, optional) |
k8s_autoscale | Autoscale a deployment, replica set, stateful set, or replication controller | resource_type (string), name (string), min (integer), max (integer), namespace (string, optional), cpu_percent (integer, optional) |
k8s_cordon | Mark a node as unschedulable | node_name (string) |
k8s_uncordon | Mark a node as schedulable | node_name (string) |
k8s_drain | Drain a node in preparation for maintenance | node_name (string), force (boolean, optional), ignore_daemonsets (boolean, optional), delete_local_data (boolean, optional), timeout (integer, optional) |
k8s_taint | Update the taints on one or more nodes | node_name (string), key (string), value (string, optional), effect (string) |
k8s_untaint | Remove the taints from a node | node_name (string), key (string), effect (string, optional) |
k8s_exec_command | Execute a command in a container | pod_name (string), command (string), container (string, optional), namespace (string, optional), stdin (boolean, optional), tty (boolean, optional), timeout (integer, optional) |
k8s_port_forward | Forward one or more local ports to a pod | resource_type (string), name (string), ports (array), namespace (string, optional), address (string, optional) |
k8s_cp | Copy files and directories to and from containers | src_path (string), dst_path (string), container (string, optional), namespace (string, optional) |
k8s_patch | Update fields of a resource | resource_type (string), name (string), patch (object), namespace (string, optional) |
k8s_label | Update the labels on a resource | resource_type (string), name (string), labels (object), namespace (string, optional), overwrite (boolean, optional) |
k8s_annotate | Update the annotations on a resource | resource_type (string), name (string), annotations (object), namespace (string, optional), overwrite (boolean, optional) |
These tools provide delete operations to Kubernetes resources:
Tool | Description | Parameters |
---|---|---|
k8s_delete | Delete resources by name, label selector, or all resources in a namespace | resource_type (string), name (string, optional), namespace (string, optional), label_selector (string, optional), all_namespaces (boolean, optional), force (boolean, optional), grace_period (integer, optional) |
How to run the project locally:
uv run -m src.mcp_kubernetes_server.main
How to inspect MCP server requests and responses:
npx @modelcontextprotocol/inspector uv run -m src.mcp_kubernetes_server.main
Here are some common issues and their solutions when working with mcp-kubernetes-server
:
Issue: mcp-kubernetes-server
cannot connect to the Kubernetes cluster or reports authentication errors.
Solution:
kubeconfig
file is correctly configured and points to the intended cluster.kubeconfig
file is correctly specified in the mcpServers
configuration (for Docker, ensure the mount path is correct; for uvx
, ensure the KUBECONFIG
environment variable is set correctly).kubeconfig
have the necessary permissions to perform operations on the cluster. You can test this with kubectl
directly (e.g., kubectl get pods
).Issue: kubectl
or helm
commands return an error like "command not found" or are disabled.
Solution:
uvx
, ensure kubectl
and/or helm
are installed on your system and available in your PATH. Refer to the "Prerequisites" section for installation guidance.--disable-kubectl
, --disable-helm
, --disable-write
, or --disable-delete
. Check the server's startup command and the "MCP Server Options" section in the README for details on these flags.Issue: How can I see the raw requests and responses between my AI client and the mcp-kubernetes-server
?
Solution:
@modelcontextprotocol/inspector
tool as mentioned in the "Development" section: npx @modelcontextprotocol/inspector uv run -m src.mcp_kubernetes_server.main
. This will show you the MCP messages being exchanged.Issue: The server starts but the AI client cannot connect. Solution:
stdio
transport (default for uvx
direct execution), ensure your AI client is configured to launch the mcp-kubernetes-server
command correctly.sse
or streamable-http
transport, ensure the host and port configured in the mcp-kubernetes-server
(e.g., --host 0.0.0.0 --port 8000
) are reachable from where your AI client is running. Check for firewall rules or network configuration issues. Also, verify the AI client is configured with the correct URL for the server.This project is open source, available on GitHub at feiskyer/mcp-kubernetes-server and licensed under the Apache License.
If you would like to contribute to the project, please follow these guidelines:
The project is licensed under the Apache License 2.0. See the LICENSE file for more details.