icon for mcp server

Graphiti

STDIO

构建和查询时态感知知识图谱的MCP服务器

Graphiti MCP Server

Graphiti is a framework for building and querying temporally-aware knowledge graphs, specifically tailored for AI agents operating in dynamic environments. Unlike traditional retrieval-augmented generation (RAG) methods, Graphiti continuously integrates user interactions, structured and unstructured enterprise data, and external information into a coherent, queryable graph. The framework supports incremental data updates, efficient retrieval, and precise historical queries without requiring complete graph recomputation, making it suitable for developing interactive, context-aware AI applications.

This is an experimental Model Context Protocol (MCP) server implementation for Graphiti. The MCP server exposes Graphiti's key functionality through the MCP protocol, allowing AI assistants to interact with Graphiti's knowledge graph capabilities.

Features

The Graphiti MCP server provides comprehensive knowledge graph capabilities:

  • Episode Management: Add, retrieve, and delete episodes (text, messages, or JSON data)
  • Entity Management: Search and manage entity nodes and relationships in the knowledge graph
  • Search Capabilities: Search for facts (edges) and node summaries using semantic and hybrid search
  • Group Management: Organize and manage groups of related data with group_id filtering
  • Graph Maintenance: Clear the graph and rebuild indices
  • Graph Database Support: Multiple backend options including FalkorDB (default) and Neo4j
  • Multiple LLM Providers: Support for OpenAI, Anthropic, Gemini, Groq, and Azure OpenAI
  • Multiple Embedding Providers: Support for OpenAI, Voyage, Sentence Transformers, and Gemini embeddings
  • Rich Entity Types: Built-in entity types including Preferences, Requirements, Procedures, Locations, Events, Organizations, Documents, and more for structured knowledge extraction
  • HTTP Transport: Default HTTP transport with MCP endpoint at /mcp/ for broad client compatibility
  • Queue-based Processing: Asynchronous episode processing with configurable concurrency limits

Quick Start

Clone the Graphiti GitHub repo

git clone https://github.com/getzep/graphiti.git

or

gh repo clone getzep/graphiti

For Claude Desktop and other stdio only clients

  1. Note the full path to this directory.
cd graphiti && pwd
  1. Install the Graphiti prerequisites.

  2. Configure Claude, Cursor, or other MCP client to use Graphiti with a stdio transport. See the client documentation on where to find their MCP configuration files.

For Cursor and other HTTP-enabled clients

  1. Change directory to the mcp_server directory

cd graphiti/mcp_server

  1. Start the combined FalkorDB + MCP server using Docker Compose (recommended)
docker compose up

This starts both FalkorDB and the MCP server in a single container.

Alternative: Run with separate containers using Neo4j:

docker compose -f docker/docker-compose-neo4j.yml up
  1. Point your MCP client to http://localhost:8000/mcp/

Installation

Prerequisites

  1. Docker and Docker Compose (for the default FalkorDB setup)
  2. OpenAI API key for LLM operations (or API keys for other supported LLM providers)
  3. (Optional) Python 3.10+ if running the MCP server standalone with an external FalkorDB instance

Setup

  1. Clone the repository and navigate to the mcp_server directory
  2. Use uv to create a virtual environment and install dependencies:
# Install uv if you don't have it already curl -LsSf https://astral.sh/uv/install.sh | sh # Create a virtual environment and install dependencies in one step uv sync # Optional: Install additional LLM providers (anthropic, gemini, groq, voyage, sentence-transformers) uv sync --extra providers

Configuration

The server can be configured using a config.yaml file, environment variables, or command-line arguments (in order of precedence).

Default Configuration

The MCP server comes with sensible defaults:

  • Transport: HTTP (accessible at http://localhost:8000/mcp/)
  • Database: FalkorDB (combined in single container with MCP server)
  • LLM: OpenAI with model gpt-5-mini
  • Embedder: OpenAI text-embedding-3-small

Database Configuration

FalkorDB (Default)

FalkorDB is a Redis-based graph database that comes bundled with the MCP server in a single Docker container. This is the default and recommended setup.

database: provider: "falkordb" # Default providers: falkordb: uri: "redis://localhost:6379" password: "" # Optional database: "default_db" # Optional

Neo4j

For production use or when you need a full-featured graph database, Neo4j is recommended:

database: provider: "neo4j" providers: neo4j: uri: "bolt://localhost:7687" username: "neo4j" password: "your_password" database: "neo4j" # Optional, defaults to "neo4j"

FalkorDB

FalkorDB is another graph database option based on Redis:

database: provider: "falkordb" providers: falkordb: uri: "redis://localhost:6379" password: "" # Optional database: "default_db" # Optional

Configuration File (config.yaml)

The server supports multiple LLM providers (OpenAI, Anthropic, Gemini, Groq) and embedders. Edit config.yaml to configure:

server: transport: "http" # Default. Options: stdio, http llm: provider: "openai" # or "anthropic", "gemini", "groq", "azure_openai" model: "gpt-4.1" # Default model database: provider: "falkordb" # Default. Options: "falkordb", "neo4j"

Using Ollama for Local LLM

To use Ollama with the MCP server, configure it as an OpenAI-compatible endpoint:

llm: provider: "openai" model: "gpt-oss:120b" # or your preferred Ollama model api_base: "http://localhost:11434/v1" api_key: "ollama" # dummy key required embedder: provider: "sentence_transformers" # recommended for local setup model: "all-MiniLM-L6-v2"

Make sure Ollama is running locally with: ollama serve

Entity Types

Graphiti MCP Server includes built-in entity types for structured knowledge extraction. These entity types are always enabled and configured via the entity_types section in your config.yaml:

Available Entity Types:

  • Preference: User preferences, choices, opinions, or selections (prioritized for user-specific information)
  • Requirement: Specific needs, features, or functionality that must be fulfilled
  • Procedure: Standard operating procedures and sequential instructions
  • Location: Physical or virtual places where activities occur
  • Event: Time-bound activities, occurrences, or experiences
  • Organization: Companies, institutions, groups, or formal entities
  • Document: Information content in various forms (books, articles, reports, videos, etc.)
  • Topic: Subject of conversation, interest, or knowledge domain (used as a fallback)
  • Object: Physical items, tools, devices, or possessions (used as a fallback)

These entity types are defined in config.yaml and can be customized by modifying the descriptions:

graphiti: entity_types: - name: "Preference" description: "User preferences, choices, opinions, or selections" - name: "Requirement" description: "Specific needs, features, or functionality" # ... additional entity types

The MCP server automatically uses these entity types during episode ingestion to extract and structure information from conversations and documents.

Environment Variables

The config.yaml file supports environment variable expansion using ${VAR_NAME} or ${VAR_NAME:default} syntax. Key variables:

  • NEO4J_URI: URI for the Neo4j database (default: bolt://localhost:7687)
  • NEO4J_USER: Neo4j username (default: neo4j)
  • NEO4J_PASSWORD: Neo4j password (default: demodemo)
  • OPENAI_API_KEY: OpenAI API key (required for OpenAI LLM/embedder)
  • ANTHROPIC_API_KEY: Anthropic API key (for Claude models)
  • GOOGLE_API_KEY: Google API key (for Gemini models)
  • GROQ_API_KEY: Groq API key (for Groq models)
  • AZURE_OPENAI_API_KEY: Azure OpenAI API key
  • AZURE_OPENAI_ENDPOINT: Azure OpenAI endpoint URL
  • AZURE_OPENAI_DEPLOYMENT: Azure OpenAI deployment name
  • AZURE_OPENAI_EMBEDDINGS_ENDPOINT: Optional Azure OpenAI embeddings endpoint URL
  • AZURE_OPENAI_EMBEDDINGS_DEPLOYMENT: Optional Azure OpenAI embeddings deployment name
  • AZURE_OPENAI_API_VERSION: Optional Azure OpenAI API version
  • USE_AZURE_AD: Optional use Azure Managed Identities for authentication
  • SEMAPHORE_LIMIT: Episode processing concurrency. See Concurrency and LLM Provider 429 Rate Limit Errors

You can set these variables in a .env file in the project directory.

Running the Server

Default Setup (FalkorDB Combined Container)

To run the Graphiti MCP server with the default FalkorDB setup:

docker compose up

This starts a single container with:

  • HTTP transport on http://localhost:8000/mcp/
  • FalkorDB graph database on localhost:6379
  • FalkorDB web UI on http://localhost:3000
  • OpenAI LLM with gpt-5-mini model

Running with Neo4j

Option 1: Using Docker Compose

The easiest way to run with Neo4j is using the provided Docker Compose configuration:

# This starts both Neo4j and the MCP server docker compose -f docker/docker-compose.neo4j.yaml up

Option 2: Direct Execution with Existing Neo4j

If you have Neo4j already running:

# Set environment variables export NEO4J_URI="bolt://localhost:7687" export NEO4J_USER="neo4j" export NEO4J_PASSWORD="your_password" # Run with Neo4j uv run graphiti_mcp_server.py --database-provider neo4j

Or use the Neo4j configuration file:

uv run graphiti_mcp_server.py --config config/config-docker-neo4j.yaml

Running with FalkorDB

Option 1: Using Docker Compose

# This starts both FalkorDB (Redis-based) and the MCP server docker compose -f docker/docker-compose.falkordb.yaml up

Option 2: Direct Execution with Existing FalkorDB

# Set environment variables export FALKORDB_URI="redis://localhost:6379" export FALKORDB_PASSWORD="" # If password protected # Run with FalkorDB uv run graphiti_mcp_server.py --database-provider falkordb

Or use the FalkorDB configuration file:

uv run graphiti_mcp_server.py --config config/config-docker-falkordb.yaml

Available Command-Line Arguments

  • --config: Path to YAML configuration file (default: config.yaml)
  • --llm-provider: LLM provider to use (openai, anthropic, gemini, groq, azure_openai)
  • --embedder-provider: Embedder provider to use (openai, azure_openai, gemini, voyage)
  • --database-provider: Database provider to use (falkordb, neo4j) - default: falkordb
  • --model: Model name to use with the LLM client
  • --temperature: Temperature setting for the LLM (0.0-2.0)
  • --transport: Choose the transport method (http or stdio, default: http)
  • --group-id: Set a namespace for the graph (optional). If not provided, defaults to "main"
  • --destroy-graph: If set, destroys all Graphiti graphs on startup

Concurrency and LLM Provider 429 Rate Limit Errors

Graphiti's ingestion pipelines are designed for high concurrency, controlled by the SEMAPHORE_LIMIT environment variable. This setting determines how many episodes can be processed simultaneously. Since each episode involves multiple LLM calls (entity extraction, deduplication, summarization), the actual number of concurrent LLM requests will be several times higher.

Default: SEMAPHORE_LIMIT=10 (suitable for OpenAI Tier 3, mid-tier Anthropic)

Tuning Guidelines by LLM Provider

OpenAI:

  • Tier 1 (free): 3 RPM → SEMAPHORE_LIMIT=1-2
  • Tier 2: 60 RPM → SEMAPHORE_LIMIT=5-8
  • Tier 3: 500 RPM → SEMAPHORE_LIMIT=10-15
  • Tier 4: 5,000 RPM → SEMAPHORE_LIMIT=20-50

Anthropic:

  • Default tier: 50 RPM → SEMAPHORE_LIMIT=5-8
  • High tier: 1,000 RPM → SEMAPHORE_LIMIT=15-30

Azure OpenAI:

  • Consult your quota in Azure Portal and adjust accordingly
  • Start conservative and increase gradually

Ollama (local):

  • Hardware dependent → SEMAPHORE_LIMIT=1-5
  • Monitor CPU/GPU usage and adjust

Symptoms

  • Too high: 429 rate limit errors, increased API costs from parallel processing
  • Too low: Slow episode throughput, underutilized API quota

Monitoring

  • Watch logs for 429 rate limit errors
  • Monitor episode processing times in server logs
  • Check your LLM provider's dashboard for actual request rates
  • Track token usage and costs

Set this in your .env file:

SEMAPHORE_LIMIT=10 # Adjust based on your LLM provider tier

Docker Deployment

The Graphiti MCP server can be deployed using Docker with your choice of database backend. The Dockerfile uses uv for package management, ensuring consistent dependency installation.

A pre-built Graphiti MCP container is available at: zepai/knowledge-graph-mcp

Environment Configuration

Before running Docker Compose, configure your API keys using a .env file (recommended):

  1. Create a .env file in the mcp_server directory:

    cd graphiti/mcp_server cp .env.example .env
  2. Edit the .env file to set your API keys:

    # Required - at least one LLM provider API key OPENAI_API_KEY=your_openai_api_key_here # Optional - other LLM providers ANTHROPIC_API_KEY=your_anthropic_key GOOGLE_API_KEY=your_google_key GROQ_API_KEY=your_groq_key # Optional - embedder providers VOYAGE_API_KEY=your_voyage_key

Important: The .env file must be in the mcp_server/ directory (the parent of the docker/ subdirectory).

Running with Docker Compose

All commands must be run from the mcp_server directory to ensure the .env file is loaded correctly:

cd graphiti/mcp_server
Option 1: FalkorDB Combined Container (Default)

Single container with both FalkorDB and MCP server - simplest option:

docker compose up
Option 2: Neo4j Database

Separate containers with Neo4j and MCP server:

docker compose -f docker/docker-compose-neo4j.yml up

Default Neo4j credentials:

  • Username: neo4j
  • Password: demodemo
  • Bolt URI: bolt://neo4j:7687
  • Browser UI: http://localhost:7474
Option 3: FalkorDB with Separate Containers

Alternative setup with separate FalkorDB and MCP server containers:

docker compose -f docker/docker-compose-falkordb.yml up

FalkorDB configuration:

  • Redis port: 6379
  • Web UI: http://localhost:3000
  • Connection: redis://falkordb:6379

Accessing the MCP Server

Once running, the MCP server is available at:

  • HTTP endpoint: http://localhost:8000/mcp/
  • Health check: http://localhost:8000/health

Running Docker Compose from a Different Directory

If you run Docker Compose from the docker/ subdirectory instead of mcp_server/, you'll need to modify the .env file path in the compose file:

# Change this line in the docker-compose file: env_file: - path: ../.env # When running from mcp_server/ # To this: env_file: - path: .env # When running from mcp_server/docker/

However, running from the mcp_server/ directory is recommended to avoid confusion.

Integrating with MCP Clients

VS Code / GitHub Copilot

VS Code with GitHub Copilot Chat extension supports MCP servers. Add to your VS Code settings (.vscode/mcp.json or global settings):

{ "mcpServers": { "graphiti": { "uri": "http://localhost:8000/mcp/", "transport": { "type": "http" } } } }

Other MCP Clients

To use the Graphiti MCP server with other MCP-compatible clients, configure it to connect to the server:

[!IMPORTANT] You will need the Python package manager, uv installed. Please refer to the uv install instructions.

Ensure that you set the full path to the uv binary and your Graphiti project folder.

{ "mcpServers": { "graphiti-memory": { "transport": "stdio", "command": "/Users/<user>/.local/bin/uv", "args": [ "run", "--isolated", "--directory", "/Users/<user>>/dev/zep/graphiti/mcp_server", "--project", ".", "graphiti_mcp_server.py", "--transport", "stdio" ], "env": { "NEO4J_URI": "bolt://localhost:7687", "NEO4J_USER": "neo4j", "NEO4J_PASSWORD": "password", "OPENAI_API_KEY": "sk-XXXXXXXX", "MODEL_NAME": "gpt-4.1-mini" } } } }

For HTTP transport (default), you can use this configuration:

{ "mcpServers": { "graphiti-memory": { "transport": "http", "url": "http://localhost:8000/mcp/" } } }

Available Tools

The Graphiti MCP server exposes the following tools:

  • add_episode: Add an episode to the knowledge graph (supports text, JSON, and message formats)
  • search_nodes: Search the knowledge graph for relevant node summaries
  • search_facts: Search the knowledge graph for relevant facts (edges between entities)
  • delete_entity_edge: Delete an entity edge from the knowledge graph
  • delete_episode: Delete an episode from the knowledge graph
  • get_entity_edge: Get an entity edge by its UUID
  • get_episodes: Get the most recent episodes for a specific group
  • clear_graph: Clear all data from the knowledge graph and rebuild indices
  • get_status: Get the status of the Graphiti MCP server and Neo4j connection

Working with JSON Data

The Graphiti MCP server can process structured JSON data through the add_episode tool with source="json". This allows you to automatically extract entities and relationships from structured data:


add_episode(
name="Customer Profile",
episode_body="{\"company\": {\"name\": \"Acme Technologies\"}, \"products\": [{\"id\": \"P001\", \"name\": \"CloudSync\"}, {\"id\": \"P002\", \"name\": \"DataMiner\"}]}",
source="json",
source_description="CRM data"
)

Integrating with the Cursor IDE

To integrate the Graphiti MCP Server with the Cursor IDE, follow these steps:

  1. Run the Graphiti MCP server using the default HTTP transport:
uv run graphiti_mcp_server.py --group-id <your_group_id>

Hint: specify a group_id to namespace graph data. If you do not specify a group_id, the server will use "main" as the group_id.

or

docker compose up
  1. Configure Cursor to connect to the Graphiti MCP server.
{ "mcpServers": { "graphiti-memory": { "url": "http://localhost:8000/mcp/" } } }
  1. Add the Graphiti rules to Cursor's User Rules. See cursor_rules.md for details.

  2. Kick off an agent session in Cursor.

The integration enables AI assistants in Cursor to maintain persistent memory through Graphiti's knowledge graph capabilities.

Integrating with Claude Desktop (Docker MCP Server)

The Graphiti MCP Server uses HTTP transport (at endpoint /mcp/). Claude Desktop does not natively support HTTP transport, so you'll need to use a gateway like mcp-remote.

  1. Run the Graphiti MCP server:

    docker compose up # Or run directly with uv: uv run graphiti_mcp_server.py
  2. (Optional) Install mcp-remote globally: If you prefer to have mcp-remote installed globally, or if you encounter issues with npx fetching the package, you can install it globally. Otherwise, npx (used in the next step) will handle it for you.

    npm install -g mcp-remote
  3. Configure Claude Desktop: Open your Claude Desktop configuration file (usually claude_desktop_config.json) and add or modify the mcpServers section as follows:

    { "mcpServers": { "graphiti-memory": { // You can choose a different name if you prefer "command": "npx", // Or the full path to mcp-remote if npx is not in your PATH "args": [ "mcp-remote", "http://localhost:8000/mcp/" // The Graphiti server's HTTP endpoint ] } } }

    If you already have an mcpServers entry, add graphiti-memory (or your chosen name) as a new key within it.

  4. Restart Claude Desktop for the changes to take effect.

Requirements

  • Python 3.10 or higher
  • OpenAI API key (for LLM operations and embeddings) or other LLM provider API keys
  • MCP-compatible client
  • Docker and Docker Compose (for the default FalkorDB combined container)
  • (Optional) Neo4j database (version 5.26 or later) if not using the default FalkorDB setup

Telemetry

The Graphiti MCP server uses the Graphiti core library, which includes anonymous telemetry collection. When you initialize the Graphiti MCP server, anonymous usage statistics are collected to help improve the framework.

What's Collected

  • Anonymous identifier and system information (OS, Python version)
  • Graphiti version and configuration choices (LLM provider, database backend, embedder type)
  • No personal data, API keys, or actual graph content is ever collected

How to Disable

To disable telemetry in the MCP server, set the environment variable:

export GRAPHITI_TELEMETRY_ENABLED=false

Or add it to your .env file:

GRAPHITI_TELEMETRY_ENABLED=false

For complete details about what's collected and why, see the Telemetry section in the main Graphiti README.

License

This project is licensed under the same license as the parent Graphiti project.

MCP Now 重磅来袭,抢先一步体验