Graphistry
STDIO使用Graphistry的GPU加速图可视化和分析工具
使用Graphistry的GPU加速图可视化和分析工具
GPU-accelerated graph visualization and analytics for Large Language Models using Graphistry and MCP.
This project integrates Graphistry's powerful GPU-accelerated graph visualization platform with the Model Control Protocol (MCP), enabling advanced graph analytics capabilities for AI assistants and LLMs. It allows LLMs to visualize and analyze complex network data through a standardized, LLM-friendly interface.
Key features:
graph_data dict for graph toolsThis MCP server requires a free Graphistry account to use visualization features.
.env file before starting the server:
Seeexport GRAPHISTRY_USERNAME=your_username export GRAPHISTRY_PASSWORD=your_password # or create a .env file with: # GRAPHISTRY_USERNAME=your_username # GRAPHISTRY_PASSWORD=your_password
.env.example for a template.To use this project with Cursor or other MCP-compatible tools, you need a .mcp.json file in your project root. A template is provided as .mcp.json.example.
Setup:
cp .mcp.json.example .mcp.json
Edit .mcp.json to:
graphistry-http: Connects via HTTP (set the url to match your server's port)graphistry: Connects via stdio (set the command, args, and env as needed)Note:
.mcp.json.example contains both HTTP and stdio configurations. Enable/disable as needed by setting the disabled field..env.example for environment variable setup.# Install via npx (no installation required) npx -y @silkspace/graphistry-mcp # Or install globally npm install -g @silkspace/graphistry-mcp graphistry-mcp
MCP Client Configuration:
Add to your MCP client settings (.mcp.json, MCP client config, etc.):
{ "graphistry": { "command": "npx", "args": ["-y", "@silkspace/graphistry-mcp"], "env": { "GRAPHISTRY_USERNAME": "your_username", "GRAPHISTRY_PASSWORD": "your_password" } } }
The npm package automatically:
uv if available, otherwise pip)# Clone the repository git clone https://github.com/graphistry/graphistry-mcp.git cd graphistry-mcp # Set up virtual environment and install dependencies python3 -m venv .venv source .venv/bin/activate pip install -e ".[dev]" # Set up your Graphistry credentials (see above)
Or use the setup script:
./setup-graphistry-mcp.sh
# Activate your virtual environment if not already active source .venv/bin/activate # Start the server (stdio mode) python run_graphistry_mcp.py # Or use the start script for HTTP or stdio mode (recommended, sources .env securely) ./start-graphistry-mcp.sh --http 8080
.env using python-dotenv, so you can safely use a .env file for local development.start-graphistry-mcp.sh script sources .env and is the most robust and secure way to launch the server.Using npm (Recommended):
Add the MCP server to your MCP client config:
{ "graphistry": { "command": "npx", "args": ["-y", "@silkspace/graphistry-mcp"], "env": { "GRAPHISTRY_USERNAME": "your_username", "GRAPHISTRY_PASSWORD": "your_password" } } }
Using manual installation:
{ "graphistry": { "command": "/path/to/your/.venv/bin/python", "args": ["/path/to/your/run_graphistry_mcp.py"], "env": { "GRAPHISTRY_USERNAME": "your_username", "GRAPHISTRY_PASSWORD": "your_password" } } }
Notes:
The main tool, visualize_graph, now accepts a single graph_data dictionary. Example:
{ "graph_data": { "graph_type": "graph", "edges": [ {"source": "A", "target": "B"}, {"source": "A", "target": "C"}, {"source": "A", "target": "D"}, {"source": "A", "target": "E"}, {"source": "B", "target": "C"}, {"source": "B", "target": "D"}, {"source": "B", "target": "E"}, {"source": "C", "target": "D"}, {"source": "C", "target": "E"}, {"source": "D", "target": "E"} ], "nodes": [ {"id": "A"}, {"id": "B"}, {"id": "C"}, {"id": "D"}, {"id": "E"} ], "title": "5-node, 10-edge Complete Graph", "description": "A complete graph of 5 nodes (K5) where every node is connected to every other node." } }
Example (hypergraph):
{ "graph_data": { "graph_type": "hypergraph", "edges": [ {"source": "A", "target": "B", "group": "G1", "weight": 0.7}, {"source": "A", "target": "C", "group": "G1", "weight": 0.6}, {"source": "B", "target": "C", "group": "G2", "weight": 0.8}, {"source": "A", "target": "D", "group": "G2", "weight": 0.5} ], "columns": ["source", "target", "group"], "title": "Test Hypergraph", "description": "A simple test hypergraph." } }
The following MCP tools are available for graph visualization, analysis, and manipulation:
PRs and issues welcome! This project is evolving rapidly as we learn more about LLM-driven graph analytics and tool integration.
MIT