icon for mcp server

Docling文档处理器

STDIO

基于Docling的文档处理服务器

MCP Docling Server

An MCP server that provides document processing capabilities using the Docling library.

Installation

You can install the package using pip:

pip install -e .

Usage

Start the server using either stdio (default) or SSE transport:

# Using stdio transport (default) mcp-server-lls # Using SSE transport on custom port mcp-server-lls --transport sse --port 8000

If you're using uv, you can run the server directly without installing:

# Using stdio transport (default) uv run mcp-server-lls # Using SSE transport on custom port uv run mcp-server-lls --transport sse --port 8000

Available Tools

The server exposes the following tools:

  1. convert_document: Convert a document from a URL or local path to markdown format

    • source: URL or local file path to the document (required)
    • enable_ocr: Whether to enable OCR for scanned documents (optional, default: false)
    • ocr_language: List of language codes for OCR, e.g. ["en", "fr"] (optional)
  2. convert_document_with_images: Convert a document and extract embedded images

    • source: URL or local file path to the document (required)
    • enable_ocr: Whether to enable OCR for scanned documents (optional, default: false)
    • ocr_language: List of language codes for OCR (optional)
  3. extract_tables: Extract tables from a document as structured data

    • source: URL or local file path to the document (required)
  4. convert_batch: Process multiple documents in batch mode

    • sources: List of URLs or file paths to documents (required)
    • enable_ocr: Whether to enable OCR for scanned documents (optional, default: false)
    • ocr_language: List of language codes for OCR (optional)
  5. qna_from_document: Create a Q&A document from a URL or local path to YAML format

    • source: URL or local file path to the document (required)
    • no_of_qnas: Number of expected Q&As (optional, default: 5)
    • Note: This tool requires IBM Watson X credentials to be set as environment variables:
  6. get_system_info: Get information about system configuration and acceleration status

Example with Llama Stack

https://github.com/user-attachments/assets/8ad34e50-cbf7-4ec8-aedd-71c42a5de0a1

You can use this server with Llama Stack to provide document processing capabilities to your LLM applications. Make sure you have a running Llama Stack server, then configure your INFERENCE_MODEL

from llama_stack_client.lib.agents.agent import Agent from llama_stack_client.lib.agents.event_logger import EventLogger from llama_stack_client.types.agent_create_params import AgentConfig from llama_stack_client.types.shared_params.url import URL from llama_stack_client import LlamaStackClient import os # Set your model ID model_id = os.environ["INFERENCE_MODEL"] client = LlamaStackClient( base_url=f"http://localhost:{os.environ.get('LLAMA_STACK_PORT', '8080')}" ) # Register MCP tools client.toolgroups.register( toolgroup_id="mcp::docling", provider_id="model-context-protocol", mcp_endpoint=URL(uri="http://0.0.0.0:8000/sse")) # Define an agent with MCP toolgroup agent_config = AgentConfig( model=model_id, instructions="""You are a helpful assistant with access to tools to manipulate documents. Always use the appropriate tool when asked to process documents.""", toolgroups=["mcp::docling"], tool_choice="auto", max_tool_calls=3, ) # Create the agent agent = Agent(client, agent_config) # Create a session session_id = agent.create_session("test-session") def _summary_and_qna(source: str): # Define the prompt run_turn(f"Please convert the document at {source} to markdown and summarize its content.") run_turn(f"Please generate a Q&A document with 3 items for source at {source} and display it in YAML format.") def _run_turn(prompt): # Create a turn response = agent.create_turn( messages=[ { "role": "user", "content": prompt, } ], session_id=session_id, ) # Log the response for log in EventLogger().log(response): log.print() _summary_and_qna('https://arxiv.org/pdf/2004.07606')

Caching

The server caches processed documents in ~/.cache/mcp-docling/ to improve performance for repeated requests.

MCP Now 重磅来袭,抢先一步体验