DBT命令行集成
STDIO用于AI代理操作DBT项目的MCP服务器
用于AI代理操作DBT项目的MCP服务器
A Model Context Protocol (MCP) server that wraps the dbt CLI tool, enabling AI coding agents to interact with dbt projects through standardized MCP tools.
uv
tool for Python environment management# Clone the repository with submodules git clone --recurse-submodules https://github.com/yourusername/dbt-cli-mcp.git cd dbt-cli-mcp # If you already cloned without --recurse-submodules, initialize the submodule # git submodule update --init # Create and activate a virtual environment uv venv source .venv/bin/activate # On Windows: .venv\Scripts\activate # Install dependencies uv pip install -e . # For development, install development dependencies uv pip install -e ".[dev]"
The package provides a command-line interface for direct interaction with dbt:
# Run dbt models dbt-mcp run --models customers --project-dir /path/to/project # Run dbt models with a custom profiles directory dbt-mcp run --models customers --project-dir /path/to/project --profiles-dir /path/to/profiles # List dbt resources dbt-mcp ls --resource-type model --output-format json # Run dbt tests dbt-mcp test --project-dir /path/to/project # Get help dbt-mcp --help dbt-mcp run --help
You can also use the module directly:
python -m src.cli run --models customers --project-dir /path/to/project
--dbt-path
: Path to dbt executable (default: "dbt")--env-file
: Path to environment file (default: ".env")--log-level
: Logging level (default: "INFO")--profiles-dir
: Path to directory containing profiles.yml file (defaults to project-dir if not specified)The server can also be configured using environment variables:
DBT_PATH
: Path to dbt executableENV_FILE
: Path to environment fileLOG_LEVEL
: Logging levelDBT_PROFILES_DIR
: Path to directory containing profiles.yml fileTo use the server with an MCP client like Claude for Desktop, add it to the client's configuration:
{ "mcpServers": { "dbt": { "command": "uv", "args": ["--directory", "/path/to/dbt-cli-mcp", "run", "src/server.py"], "env": { "DBT_PATH": "/absolute/path/to/dbt", "ENV_FILE": ".env" // You can also set DBT_PROFILES_DIR here for a server-wide default } } } }
When using any tool from this MCP server, you MUST specify the FULL ABSOLUTE PATH to your dbt project directory with the project_dir
parameter. Relative paths will not work correctly.
// ❌ INCORRECT - Will NOT work { "project_dir": "." } // ✅ CORRECT - Will work { "project_dir": "/Users/username/path/to/your/dbt/project" }
See the complete dbt MCP usage guide for more detailed instructions and examples.
The server provides the following MCP tools:
dbt_run
: Run dbt models (requires absolute project_dir
)dbt_test
: Run dbt tests (requires absolute project_dir
)dbt_ls
: List dbt resources (requires absolute project_dir
)dbt_compile
: Compile dbt models (requires absolute project_dir
)dbt_debug
: Debug dbt project setup (requires absolute project_dir
)dbt_deps
: Install dbt package dependencies (requires absolute project_dir
)dbt_seed
: Load CSV files as seed data (requires absolute project_dir
)dbt_show
: Preview model results (requires absolute project_dir
)
{ "models": "customers", "project_dir": "/path/to/dbt/project", "limit": 10 } </use_mcp_tool>
### dbt Profiles Configuration
When using the dbt MCP tools, it's important to understand how dbt profiles are handled:
1. The `project_dir` parameter **MUST** be an absolute path (e.g., `/Users/username/project` not `.`) that points to a directory containing both:
- A valid `dbt_project.yml` file
- A valid `profiles.yml` file with the profile referenced in the project
2. The MCP server automatically sets the `DBT_PROFILES_DIR` environment variable to the absolute path of the directory specified in `project_dir`. This tells dbt where to look for the profiles.yml file.
3. If you encounter a "Could not find profile named 'X'" error, it means either:
- The profiles.yml file is missing from the project directory
- The profiles.yml file doesn't contain the profile referenced in dbt_project.yml
- You provided a relative path instead of an absolute path for `project_dir`
Example of a valid profiles.yml file:
```yaml
jaffle_shop: # This name must match the profile in dbt_project.yml
target: dev
outputs:
dev:
type: duckdb
path: 'jaffle_shop.duckdb'
threads: 24
When running commands through the MCP server, ensure your project directory is structured correctly with both configuration files present.
The project includes integration tests that verify functionality against a real dbt project:
# Run all integration tests python integration_tests/run_all.py # Run a specific integration test python integration_tests/test_dbt_run.py
The integration tests use the jaffle_shop_duckdb project which is included as a Git submodule in the dbt_integration_tests directory. When you clone the repository with --recurse-submodules
as mentioned in the Setup section, this will automatically be initialized.
If you need to update the test project to the latest version from the original repository:
git submodule update --remote dbt_integration_tests/jaffle_shop_duckdb
If you're seeing errors about missing files in the jaffle_shop_duckdb directory, you may need to initialize the submodule:
git submodule update --init
MIT