
Yandex Search
STDIOHTTP-SSEMCP server enabling AI assistants to perform web searches using Yandex Search API
MCP server enabling AI assistants to perform web searches using Yandex Search API
This Model Context Protocol (MCP) server lets AI assistants like Claude and Cursor use the Yandex Search API for searching the web. Yandex Search enables LLM agents to safely and easily find up-to-date information on the internet.
The Yandex Search MCP server includes the following tools:
To use this MCP server, you need to be a customer of Yandex Search API. You need a Yandex Search API key:
https://d5dj4o5pbnqgca1d546v.cmxivbes.apigw.yandexcloud.net:3000/sse
Open the Claude Desktop app and enable Developer Mode from the top-left menu bar.
Once enabled, open Settings (also from the top-left menu bar) and navigate to the Developer Option.
Click the Edit Config button to open the claude_desktop_config.json file
Add the following text to your Claude Desktop configuration file:
{ "mcpServers": { "yandexSearch": { "command": "npx", "args": [ "-y", "mcp-remote", "https://d5dj4o5pbnqgca1d546v.cmxivbes.apigw.yandexcloud.net:3000/sse" ], "headers": { "ApiKey": "<your_api_key>" } } } }
For the changes to take effect:
Open Settings and navigate to Tools and Integrations in the left panel.
Click the Add Custom MCP button to create the mcp.json config file in cursor
Add the following text to your Claude Desktop configuration file:
{ "servers": { "yandexSearch": { "type": "sse", "url": "https://d5dj4o5pbnqgca1d546v.cmxivbes.apigw.yandexcloud.net:3000/sse", "headers": { "ApiKey": "<your_api_key>" } } } }
use yandexSearch to find information about the best AI Agent frameworks in 2025
Enable the chat.mcp.enabled setting in VS Code to enable MCP support.
Add a .vscode/mcp.json file in your workspace to configure MCP servers for a workspace.
Add the following text to your Claude Desktop configuration file:
{ "mcpServers": { "yandexSearch": { "type": "sse", "url": "https://d5dj4o5pbnqgca1d546v.cmxivbes.apigw.yandexcloud.net:3000/sse", "headers": { "ApiKey": "<your_api_key>" } } } }
git clone [email protected]:yandex/yandex-search-mcp-server.git cd /path/to/yandex-search-mcp-server
To run the MCP server in a container using Docker or Podman:
Enter your Docker Hub username and password when prompted.podman login docker.io
docker build -t yandex-mcp-server-image:latest .
podman build -t yandex-mcp-server-image:latest .
This will create an image named yandex-mcp-server-image
.
SEARCH_API_KEY
.For MCP clients that support direct interaction with Docker or Podman containers, add one of these configurations to the MCP config in your MCP client of choice (e.g. mcp.json in VS Code):
{ "mcpServers": { "yandex-search-api-docker": { "autoApprove": [], "disabled": true, "timeout": 60, "type": "stdio", "command": "sh", "args": [ "-c", "docker rm -f yandex-mcp-container; docker run -i --name yandex-mcp-container --env SEARCH_API_KEY=<your_api_key> yandex-mcp-server-image:latest" ] } } }
{ "mcpServers": { "yandex-search-api-podman": { "autoApprove": [], "disabled": true, "timeout": 60, "type": "stdio", "command": "sh", "args": [ "-c", "podman rm -f yandex-mcp-container; podman run -i --name yandex-mcp-container --env SEARCH_API_KEY=<your_api_key> yandex-mcp-server-image:latest" ] } } }
Important: Replace <your_api_key>
with your actual Yandex Search API key. Ensure that only one instance of the server (local or Docker) is active at a time to avoid conflicts.
After updating the configuration, the system should automatically detect and run the server, exposing the ai_search_with_yazeka
and web_search
tools for use.
pip install -r requirements.txt
To setup the MCP server on your system using Python, add the following configuration to your MCP settings and set SEARCH_API_KEY
:
{ "mcpServers": { "yandex-search-api": { "autoApprove": [], "disabled": true, "timeout": 60, "type": "stdio", "command": "env", "args": [ "SEARCH_API_KEY=<your_api_key>", "python3", "/path/to/mcp-server-demo/server.py" ] } } }
Important: Replace <your_api_key>
with your actual Yandex Search API key and update /path/to/mcp-server-demo
to the actual path where the repository is located on your system if necessary.
After updating the configuration, the system should automatically detect and run the server, exposing the ai_search_with_yazeka
and web_search
tools for use.
To run the MCP server directly on your machine without containerization:
<your_api_key>
with your actual Yandex Search API key):export SEARCH_API_KEY=<your_api_key>
python3 server.py
The server will start and listen for input on stdin, responding on stdout. Typically, this server is integrated with a system that communicates via MCP, however you can send requests to the server from the terminal.
Copy and Paste these example requests in the terminal with the Yandex Search MCP server running locally to see the search results and the generative AI answer right in the terminal.
{ "query": "Who won the most recent Formula 1 race in 2025?", "search_region": "en" }
{ "query": "Who won the most recent Formula 1 race in 2025?", "search_region": "en" }
pip install -r requirements.txt
).SEARCH_API_KEY
is correctly set in your environment or configuration.Built by the Yandex team with ❤️