
Wavespeed
STDIOOfficialMCP server for WaveSpeed AI image and video generation services
MCP server for WaveSpeed AI image and video generation services
WavespeedMCP is a Model Control Protocol (MCP) server implementation for WaveSpeed AI services. It provides a standardized interface for accessing WaveSpeed's image and video generation capabilities through the MCP protocol.
Install directly from PyPI:
pip install wavespeed-mcp
To use WavespeedMCP with your IDE or application, add the following configuration:
{ "mcpServers": { "Wavespeed": { "command": "wavespeed-mcp", "env": { "WAVESPEED_API_KEY": "wavespeedkey" } } } }
Start the WavespeedMCP server:
wavespeed-mcp --api-key your_api_key_here
WavespeedMCP can be integrated with Claude Desktop. To generate the necessary configuration file:
python -m wavespeed_mcp --api-key your_api_key_here --config-path /path/to/claude/config
This command generates a claude_desktop_config.json
file that configures Claude Desktop to use WavespeedMCP tools. After generating the configuration:
wavespeed-mcp
commandWavespeedMCP can be configured through:
Environment Variables:
WAVESPEED_API_KEY
: Your WaveSpeed API key (required)WAVESPEED_API_HOST
: API host URL (default: https://api.wavespeed.ai)WAVESPEED_MCP_BASE_PATH
: Base path for output files (default: ~/Desktop)WAVESPEED_API_RESOURCE_MODE
: Resource output mode (options: url, base64, local; default: url)WAVESPEED_LOG_LEVEL
: Logging level (options: DEBUG, INFO, WARNING, ERROR; default: INFO)WAVESPEED_API_TEXT_TO_IMAGE_ENDPOINT
: Custom endpoint for text-to-image generation (default: /wavespeed-ai/flux-dev)WAVESPEED_API_IMAGE_TO_IMAGE_ENDPOINT
: Custom endpoint for image-to-image generation (default: /wavespeed-ai/flux-kontext-pro)WAVESPEED_API_VIDEO_ENDPOINT
: Custom endpoint for video generation (default: /wavespeed-ai/wan-2.1/i2v-480p-lora)Command-line Arguments:
--api-key
: Your WaveSpeed API key--api-host
: API host URL--config
: Path to configuration fileConfiguration File (JSON format):
See wavespeed_mcp_config_demo.json
for an example.
WavespeedMCP follows a clean, modular architecture:
server.py
: Core MCP server implementation with tool definitionsclient.py
: Optimized API client with intelligent pollingutils.py
: Comprehensive utility functions for resource handlingexceptions.py
: Specialized exception hierarchy for error handlingconst.py
: Constants and default configuration valuespip install -e ".[dev]"
Run the test suite:
pytest
Or with coverage reporting:
pytest --cov=wavespeed_mcp
This project is licensed under the MIT License - see the LICENSE file for details.
For support or feature requests, please contact the WaveSpeed AI team at [email protected].