Sequential Thinking
STDIOMulti-agent sequential thinking MCP server with specialized AI agents for complex problem analysis
Multi-agent sequential thinking MCP server with specialized AI agents for complex problem analysis
English | 简体中文
This project implements an advanced sequential thinking process using a Multi-Agent System (MAS) built with the Agno framework and served via MCP. It represents a significant evolution from simpler state-tracking approaches by leveraging coordinated, specialized agents for deeper analysis and problem decomposition.
This is an MCP server - not a standalone application. It runs as a background service that extends your LLM client (like Claude Desktop) with sophisticated sequential thinking capabilities. The server provides a sequentialthinking tool that processes thoughts through multiple specialized AI agents, each examining the problem from a different cognitive angle.
The system employs 6 specialized thinking agents, each focused on a distinct cognitive perspective:
The system uses AI-driven complexity analysis to determine the optimal thinking sequence:
Single Agent (Simple questions)
Double Agent (Moderate complexity)
Triple Agent (Core thinking)
Full Sequence (Complex problems)
The AI analyzer evaluates:
flowchart TD A[Input Thought] --> B[AI Complexity Analyzer] B --> C{Problem Analysis} C --> C1[Complexity Score<br/>0-100] C --> C2[Problem Type<br/>FACTUAL/EMOTIONAL/<br/>CREATIVE/PHILOSOPHICAL] C --> C3[Required Thinking Modes] C1 --> D{Routing Decision} C2 --> D C3 --> D D -->|Score: 0-25<br/>Simple| E1[Single Agent Strategy] D -->|Score: 26-50<br/>Moderate| E2[Double Agent Strategy] D -->|Score: 51-75<br/>Complex| E3[Triple Agent Strategy] D -->|Score: 76-100<br/>Highly Complex| E4[Full Sequence Strategy] %% Single Agent Flow E1 --> F1[Factual Agent<br/>120s + ExaTools] F1 --> G1[Direct Response] %% Double Agent Flow (Full Parallel) E2 --> DA1[Both Agents Run in Parallel] DA1 --> DA2["Agent 1 e.g. Optimistic<br/>120s + ExaTools"] DA1 --> DA3["Agent 2 e.g. Critical<br/>120s + ExaTools"] DA2 --> G2[Programmatic Synthesis<br/>Combines both parallel results] DA3 --> G2 %% Triple Agent Flow (Full Parallel) E3 --> TA1[All 3 Agents Run in Parallel] TA1 --> TA2[Factual Agent<br/>120s + ExaTools] TA1 --> TA3[Creative Agent<br/>240s + ExaTools] TA1 --> TA4[Critical Agent<br/>120s + ExaTools] TA2 --> G3[Programmatic Synthesis<br/>Integrates all 3 results] TA3 --> G3 TA4 --> G3 %% Full Sequence Flow (3-Step Process) E4 --> FS1[Step 1: Initial Synthesis<br/>60s Enhanced Model<br/>Initial orchestration] FS1 --> FS2[Step 2: Parallel Execution<br/>5 Agents Run Simultaneously] FS2 --> FS2A[Factual Agent<br/>120s + ExaTools] FS2 --> FS2B[Emotional Agent<br/>30s Quick Response] FS2 --> FS2C[Optimistic Agent<br/>120s + ExaTools] FS2 --> FS2D[Critical Agent<br/>120s + ExaTools] FS2 --> FS2E[Creative Agent<br/>240s + ExaTools] FS2A --> FS3[Step 3: Final Synthesis<br/>60s Enhanced Model<br/>Integrates all parallel results] FS2B --> FS3 FS2C --> FS3 FS2D --> FS3 FS2E --> FS3 FS3 --> G4[Final Synthesis Output<br/>Comprehensive integrated result] G1 --> H[Next Iteration or<br/>Final Answer] G2 --> H G3 --> H G4 --> H style A fill:#e1f5fe style B fill:#f3e5f5 style C fill:#fff3e0 style D fill:#e8f5e8 style TA1 fill:#ffecb3 style FS2 fill:#ffecb3 style G1 fill:#fce4ec style G2 fill:#fce4ec style G3 fill:#fce4ec style G4 fill:#fce4ec style H fill:#f1f8e9
Key Insights:
4 out of 6 agents are equipped with web research capabilities via ExaTools:
Research is optional - requires EXA_API_KEY environment variable. The system works perfectly without it, using pure reasoning capabilities.
This Python/Agno implementation marks a fundamental shift from the original TypeScript version:
| Feature/Aspect | Python/Agno Version (Current) | TypeScript Version (Original) | 
|---|---|---|
| Architecture | Multi-Agent System (MAS); Active processing by a team of agents. | Single Class State Tracker; Simple logging/storing. | 
| Intelligence | Distributed Agent Logic; Embedded in specialized agents & Coordinator. | External LLM Only; No internal intelligence. | 
| Processing | Active Analysis & Synthesis; Agents act on the thought. | Passive Logging; Merely recorded the thought. | 
| Frameworks | Agno (MAS) + FastMCP (Server); Uses dedicated MAS library. | MCP SDK only. | 
| Coordination | Explicit Team Coordination Logic (Team in coordinate mode). | None; No coordination concept. | 
| Validation | Pydantic Schema Validation; Robust data validation. | Basic Type Checks; Less reliable. | 
| External Tools | Integrated (Exa via Researcher); Can perform research tasks. | None. | 
| Logging | Structured Python Logging (File + Console); Configurable. | Console Logging with Chalk; Basic. | 
| Language & Ecosystem | Python; Leverages Python AI/ML ecosystem. | TypeScript/Node.js. | 
In essence, the system evolved from a passive thought recorder to an active thought processor powered by a collaborative team of AI agents.
sequentialthinking tool to define the problem and initiate the process.sequentialthinking tool with the current thought, structured according to the ThoughtData model.High Token Usage: Due to the Multi-Agent System architecture, this tool consumes significantly more tokens than single-agent alternatives or the previous TypeScript version. Each sequentialthinking call invokes multiple specialized agents simultaneously, leading to substantially higher token usage (potentially 5-10x more than simple approaches).
This parallel processing leads to substantially higher token usage (potentially 5-10x more) compared to simpler sequential approaches, but provides correspondingly deeper and more comprehensive analysis.
sequentialthinkingThe server exposes a single MCP tool that processes sequential thoughts:
{ thought: string, // Current thinking step content thoughtNumber: number, // Sequence number (≥1) totalThoughts: number, // Estimated total steps nextThoughtNeeded: boolean, // Is another step required? isRevision: boolean, // Revising previous thought? branchFromThought?: number, // Branch point (for exploration) branchId?: string, // Branch identifier needsMoreThoughts: boolean // Need to extend sequence? }
Returns synthesized analysis from the multi-agent system with:
DEEPSEEK_API_KEY (default, recommended)GROQ_API_KEYOPENROUTER_API_KEYGITHUB_TOKENANTHROPIC_API_KEYEXA_API_KEY for web research capabilitiesuv package manager (recommended) or pipnpx -y @smithery/cli install @FradSer/mcp-server-mas-sequential-thinking --client claude
# Clone the repository git clone https://github.com/FradSer/mcp-server-mas-sequential-thinking.git cd mcp-server-mas-sequential-thinking # Install with uv (recommended) uv pip install . # Or with pip pip install .
Add to your MCP client configuration:
{ "mcpServers": { "sequential-thinking": { "command": "mcp-server-mas-sequential-thinking", "env": { "LLM_PROVIDER": "deepseek", "DEEPSEEK_API_KEY": "your_api_key", "EXA_API_KEY": "your_exa_key_optional" } } } }
Create a .env file or set these variables:
# LLM Provider (required) LLM_PROVIDER="deepseek" # deepseek, groq, openrouter, github, anthropic, ollama DEEPSEEK_API_KEY="sk-..." # Optional: Enhanced/Standard Model Selection # DEEPSEEK_ENHANCED_MODEL_ID="deepseek-chat" # For synthesis # DEEPSEEK_STANDARD_MODEL_ID="deepseek-chat" # For other agents # Optional: Web Research (enables ExaTools) # EXA_API_KEY="your_exa_api_key" # Optional: Custom endpoint # LLM_BASE_URL="https://custom-endpoint.com"
# Groq with different models GROQ_ENHANCED_MODEL_ID="openai/gpt-oss-120b" GROQ_STANDARD_MODEL_ID="openai/gpt-oss-20b" # Anthropic with Claude models ANTHROPIC_ENHANCED_MODEL_ID="claude-3-5-sonnet-20241022" ANTHROPIC_STANDARD_MODEL_ID="claude-3-5-haiku-20241022" # GitHub Models GITHUB_ENHANCED_MODEL_ID="gpt-4o" GITHUB_STANDARD_MODEL_ID="gpt-4o-mini"
Once installed and configured in your MCP client:
sequentialthinking tool becomes availableRun the server manually for testing:
# Using installed script mcp-server-mas-sequential-thinking # Using uv uv run mcp-server-mas-sequential-thinking # Using Python python src/mcp_server_mas_sequential_thinking/main.py
# Clone repository git clone https://github.com/FradSer/mcp-server-mas-sequential-thinking.git cd mcp-server-mas-sequential-thinking # Create virtual environment python -m venv .venv source .venv/bin/activate # On Windows: .venv\Scripts\activate # Install with dev dependencies uv pip install -e ".[dev]"
# Format and lint uv run ruff check . --fix uv run ruff format . uv run mypy . # Run tests (when available) uv run pytest
npx @modelcontextprotocol/inspector uv run mcp-server-mas-sequential-thinking
Open http://127.0.0.1:6274/ and test the sequentialthinking tool.
mcp-server-mas-sequential-thinking/
├── src/mcp_server_mas_sequential_thinking/
│   ├── main.py                          # MCP server entry point
│   ├── processors/
│   │   ├── multi_thinking_core.py       # 6 thinking agents definition
│   │   └── multi_thinking_processor.py  # Sequential processing logic
│   ├── routing/
│   │   ├── ai_complexity_analyzer.py    # AI-powered analysis
│   │   └── multi_thinking_router.py     # Intelligent routing
│   ├── services/
│   │   ├── thought_processor_refactored.py
│   │   ├── workflow_executor.py
│   │   └── context_builder.py
│   └── config/
│       ├── modernized_config.py         # Provider strategies
│       └── constants.py                 # System constants
├── pyproject.toml                       # Project configuration
└── README.md                            # This file
See CHANGELOG.md for version history.
Contributions are welcome! Please ensure:
This project is licensed under the MIT License - see the LICENSE file for details.
Note: This is an MCP server, designed to work with MCP-compatible clients like Claude Desktop. It is not a standalone chat application.