icon for mcp server

Scientific Paper Harvester

STDIO

MCP server providing real-time access to scientific papers from 6 major academic sources

Scientific Paper Harvester MCP Server

A comprehensive Model Context Protocol (MCP) server that provides LLMs with real-time access to scientific papers from 6 major academic sources: arXiv, OpenAlex, PMC (PubMed Central), Europe PMC, bioRxiv/medRxiv, and CORE.

🚀 Features

Comprehensive Source Coverage

  • arXiv: Computer science, physics, mathematics preprints and papers
  • OpenAlex: Open catalog of scholarly papers with citation data
  • PMC: PubMed Central biomedical and life science literature
  • Europe PMC: European life science literature database
  • bioRxiv/medRxiv: Biology and medical preprint servers
  • CORE: World's largest collection of open access research papers

Advanced Capabilities

  • Paper Fetching: Get latest papers from any source by category/concept
  • Paper Search: Search papers by title, abstract, author, or full-text across 4 major sources
  • Full-Text Extraction: Extract complete text content with intelligent fallback strategies
  • Citation Analysis: Find top cited papers from OpenAlex since a specific date
  • Paper Lookup: Retrieve full metadata for specific papers by ID
  • Category Discovery: Browse available categories from all sources
  • Smart Rate Limiting: Respectful API usage with per-source rate limiting
  • DOI Resolution: Advanced DOI resolver with Unpaywall → Crossref → Semantic Scholar fallback
  • Dual Interface: Both MCP protocol and CLI access
  • TypeScript: Full type safety with ESM modules

📊 Coverage Statistics

  • Total Sources: 6 academic databases
  • Category Coverage: 100+ categories across all disciplines
  • Paper Access: 200M+ papers with intelligent text extraction
  • Text Extraction Success: >90% for supported paper types
  • Response Time: <15 seconds average for paper fetching

🛠 Installation

npm install npm run build

📋 MCP Client Configuration

To use this server with an MCP client (like Claude Desktop), add the following to your MCP client configuration:

For published package (available on npm):

Option 1: Using npx (recommended for AI tools like Claude)

{ "mcpServers": { "scientific-papers": { "command": "npx", "args": [ "-y", "@futurelab-studio/latest-science-mcp@latest" ] } } }

Option 2: Global installation

npm install -g @futurelab-studio/latest-science-mcp

Then configure:

{ "mcpServers": { "scientific-papers": { "command": "latest-science-mcp" } } }

📖 Usage

CLI Interface

List Categories

# List arXiv categories node dist/cli.js list-categories --source=arxiv # List OpenAlex concepts node dist/cli.js list-categories --source=openalex # List PMC biomedical categories node dist/cli.js list-categories --source=pmc # List Europe PMC life science categories node dist/cli.js list-categories --source=europepmc # List bioRxiv/medRxiv categories (includes both servers) node dist/cli.js list-categories --source=biorxiv # List CORE academic categories node dist/cli.js list-categories --source=core

Fetch Latest Papers

# Get latest AI papers from arXiv node dist/cli.js fetch-latest --source=arxiv --category=cs.AI --count=10 # Get latest biology papers from bioRxiv node dist/cli.js fetch-latest --source=biorxiv --category="biorxiv:biology" --count=5 # Get latest immunology papers from PMC node dist/cli.js fetch-latest --source=pmc --category=immunology --count=3 # Get latest papers from CORE by subject node dist/cli.js fetch-latest --source=core --category=computer_science --count=5 # Search by concept name (OpenAlex) node dist/cli.js fetch-latest --source=openalex --category="machine learning" --count=3

Fetch Top Cited Papers

# Get top 20 cited papers in machine learning since 2024 node dist/cli.js fetch-top-cited --concept="machine learning" --since=2024-01-01 --count=20 # Get top cited papers by concept ID node dist/cli.js fetch-top-cited --concept=C41008148 --since=2023-06-01 --count=10

Search Papers

# Search by keywords across all fields node dist/cli.js search-papers --source=arxiv --query="machine learning" --count=10 # Search by paper title node dist/cli.js search-papers --source=openalex --query="neural networks" --field=title --count=5 # Search by author name node dist/cli.js search-papers --source=europepmc --query="John Smith" --field=author --count=10 # Search full-text content sorted by citations node dist/cli.js search-papers --source=core --query="climate change" --field=fulltext --sortBy=citations --count=20

Fetch Specific Paper Content

# Get arXiv paper by ID node dist/cli.js fetch-content --source=arxiv --id=2401.12345 # Get bioRxiv paper by DOI node dist/cli.js fetch-content --source=biorxiv --id="10.1101/2021.01.01.425001" # Get PMC paper by ID node dist/cli.js fetch-content --source=pmc --id=PMC8245678 # Get CORE paper by ID node dist/cli.js fetch-content --source=core --id=12345678 # Show text content with preview node dist/cli.js fetch-content --source=arxiv --id=2401.12345 --show-text --text-preview=500

🔧 Available Tools

list_categories

Lists available categories/concepts from any data source.

Parameters:

  • source: "arxiv" | "openalex" | "pmc" | "europepmc" | "biorxiv" | "core"

Returns:

  • Array of category objects with id, name, and optional description

Examples:

{ "name": "list_categories", "arguments": { "source": "biorxiv" } }

fetch_latest

Fetches the latest papers from any source for a given category with metadata only (no text extraction).

Parameters:

  • source: "arxiv" | "openalex" | "pmc" | "europepmc" | "biorxiv" | "core"
  • category: Category ID or concept name (varies by source)
  • count: Number of papers to fetch (default: 50, max: 200)

Category Examples by Source:

  • arXiv: "cs.AI", "physics.gen-ph", "math.CO"
  • OpenAlex: "artificial intelligence", "machine learning", "C41008148"
  • PMC: "immunology", "genetics", "neuroscience"
  • Europe PMC: "biology", "medicine", "cancer"
  • bioRxiv/medRxiv: "biorxiv:neuroscience", "medrxiv:psychiatry"
  • CORE: "computer_science", "mathematics", "physics"

Returns:

  • Array of paper objects with metadata (id, title, authors, date, pdf_url)
  • Text field: Empty string (text: "") - use fetch_content for full text

fetch_top_cited

Fetches the top cited papers from OpenAlex for a given concept since a specific date.

Parameters:

  • concept: Concept name or OpenAlex concept ID
  • since: Start date in YYYY-MM-DD format
  • count: Number of papers to fetch (default: 50, max: 200)

search_papers

Searches for papers across multiple academic sources with field-specific search and sorting options.

Parameters:

  • source: "arxiv" | "openalex" | "europepmc" | "core"
  • query: Search query string (max 1500 characters)
  • field: "all" | "title" | "abstract" | "author" | "fulltext" (default: "all")
  • count: Number of results to return (default: 50, max: 200)
  • sortBy: "relevance" | "date" | "citations" (default: "relevance")

Search Capabilities by Source:

  • arXiv: Title, abstract, author, and general search with Boolean operators
  • OpenAlex: Advanced search with relevance scoring and citation sorting
  • Europe PMC: Biomedical literature with MeSH terms and full-text search
  • CORE: Global academic papers with advanced query language

Example Queries:

  • Keywords: "machine learning", "climate change"
  • Phrases: "artificial intelligence" (use quotes for exact phrases)
  • Boolean: "deep learning AND neural networks" (arXiv supports this)
  • Authors: "John Smith", "Smith J"

Returns:

  • Array of paper objects with metadata (id, title, authors, date, pdf_url)
  • Text field: Empty string (text: "") - use fetch_content for full text

fetch_content

Fetches full metadata and text content for a specific paper by ID with complete text extraction.

Parameters:

  • source: Any of the 6 supported sources
  • id: Paper ID (format varies by source)

ID Formats by Source:

  • arXiv: "2401.12345", "cs/0601001", "1234.5678v2"
  • OpenAlex: "W2741809807" or numeric 2741809807
  • PMC: "PMC8245678" or "12345678"
  • Europe PMC: "PMC8245678", "12345678", or DOI
  • bioRxiv/medRxiv: "10.1101/2021.01.01.425001" or "2021.01.01.425001"
  • CORE: Numeric ID like "12345678"

📄 Paper Metadata Format

All tools return paper objects with the following structure:

{ id: string; // Paper ID title: string; // Paper title authors: string[]; // List of author names date: string; // Publication date (ISO format) pdf_url?: string; // PDF URL (if available) text: string; // Extracted full text content textTruncated?: boolean; // Warning: text was truncated due to size limits textExtractionFailed?: boolean; // Warning: text extraction failed }

🧠 Advanced Text Extraction

Multi-Source Strategy

Each source has specialized text extraction approaches:

  • arXiv: HTML from arxiv.org/html with ar5iv.labs.arxiv.org fallback
  • OpenAlex: HTML sources with DOI resolver fallback chain
  • PMC: E-utilities API with XML/HTML extraction
  • Europe PMC: REST API with multiple URL strategies
  • bioRxiv/medRxiv: Direct HTML extraction with abstract fallback
  • CORE: PDF/HTML with source URL fallback

DOI Resolution Chain

Advanced DOI resolver with multiple fallback strategies:

  1. Unpaywall → Free full-text sources
  2. Crossref → Publisher metadata and links
  3. Semantic Scholar Academic Graph → Alternative access

Performance & Reliability

  • Text Extraction Success: >90% for HTML-available papers
  • Graceful Degradation: Always returns metadata even if text extraction fails
  • Size Management: 6MB text limit with intelligent truncation
  • Caching: 24-hour LRU cache for DOI resolution

🔄 Rate Limiting

Respectful API usage with per-source rate limiting:

  • arXiv: 5 requests per minute
  • OpenAlex: 10 requests per minute
  • PMC: 3 requests per second
  • Europe PMC: 10 requests per minute
  • bioRxiv/medRxiv: 5 requests per minute
  • CORE: 10 requests per minute (public), higher with API key

CORE API Configuration

For enhanced CORE access, set environment variable:

export CORE_API_KEY="your-api-key"

🧪 Testing

Run Test Suite

# Run all tests npm test # Run integration tests npm run test -- tests/integration # Run end-to-end workflow tests npm run test -- tests/e2e # Run performance benchmarks npm run test -- tests/integration/performance.test.ts

Test Coverage

  • Integration Tests: All 6 sources tested end-to-end
  • Performance Tests: Response time and throughput benchmarks
  • Workflow Tests: Real research scenarios across multiple sources
  • Unit Tests: Core components and edge cases

🏗 Architecture

Modular Driver System

  • Clean separation between sources
  • Consistent interface across all drivers
  • Specialized text extraction per source

Advanced Features

  • DOI Resolution: Multi-provider fallback chain
  • Rate Limiting: Token bucket algorithm per source
  • Text Processing: HTML cleaning and normalization
  • Error Handling: Structured responses with actionable suggestions
  • Caching: Intelligent caching for DOI resolution

Technology Stack

  • TypeScript + ESM: Modern JavaScript with full type safety
  • Modular Design: Clean separation of concerns
  • Graceful Degradation: Always functional even with partial failures
  • Response Size Management: Automatic truncation and warnings

📊 Source Comparison

SourcePapersDisciplinesFull-TextCitation DataPreprintsSearch
arXiv2.3M+STEMHTML ✓Limited✓✓✓
OpenAlex200M+AllVariable✓✓✓✓✓✓
PMC7M+BiomedicalXML/HTML ✓LimitedLimited
Europe PMC40M+Life SciencesHTML ✓Limited✓✓✓
bioRxiv/medRxiv500K+Bio/MedicalHTML ✓Limited✓✓✓Limited
CORE200M+AllPDF/HTML ✓Limited✓✓✓

🔧 Development

Build

npm run build

Test Individual Sources

# Test specific sources node dist/cli.js list-categories --source=arxiv node dist/cli.js fetch-latest --source=biorxiv --category="biorxiv:biology" --count=3 node dist/cli.js fetch-content --source=core --id=12345678 # Test search functionality node dist/cli.js search-papers --source=arxiv --query="artificial intelligence" --count=5 node dist/cli.js search-papers --source=openalex --query="quantum computing" --field=title --count=3

Performance Testing

# Run performance benchmarks npm run test -- tests/integration/performance.test.ts # Test memory usage npm run test -- --reporter=verbose

🚨 Error Handling

Comprehensive error handling for all sources:

  • Invalid paper IDs with format suggestions
  • Rate limiting with retry-after information
  • API timeouts and server errors
  • Missing authentication (CORE API key)
  • Network connectivity issues
  • Text extraction failures with fallback strategies

🔍 Troubleshooting

Common Issues

  • Rate limiting: Automatic retry with exponential backoff
  • Missing papers: Try alternative sources for the same content
  • Text extraction failures: Fallback to abstract or metadata
  • CORE API limits: Set CORE_API_KEY environment variable

Performance Optimization

  • Use appropriate count parameters (smaller for faster responses)
  • Cache results when possible
  • Use fetch_latest for discovery, fetch_content for detailed reading

📝 License

MIT


Ready to explore the world's scientific knowledge? Start with any of the 6 sources and discover papers across all academic disciplines! 🔬📚

Be the First to Experience MCP Now