RagDocs Retrieval
STDIOMCP server providing RAG capabilities using Qdrant vector database and Ollama/OpenAI embeddings.
MCP server providing RAG capabilities using Qdrant vector database and Ollama/OpenAI embeddings.
A Model Context Protocol (MCP) server that provides RAG (Retrieval-Augmented Generation) capabilities using Qdrant vector database and Ollama/OpenAI embeddings. This server enables semantic search and management of documentation through vector similarity.
Add a document to the RAG system.
Parameters:
url
(required): Document URL/identifiercontent
(required): Document contentmetadata
(optional): Document metadata
title
: Document titlecontentType
: Content type (e.g., "text/markdown")Search through stored documents using semantic similarity.
Parameters:
query
(required): Natural language search queryoptions
(optional):
limit
: Maximum number of results (1-20, default: 5)scoreThreshold
: Minimum similarity score (0-1, default: 0.7)filters
:
domain
: Filter by domainhasCode
: Filter for documents containing codeafter
: Filter for documents after date (ISO format)before
: Filter for documents before date (ISO format)List all stored documents with pagination and grouping options.
Parameters (all optional):
page
: Page number (default: 1)pageSize
: Number of documents per page (1-100, default: 20)groupByDomain
: Group documents by domain (default: false)sortBy
: Sort field ("timestamp", "title", or "domain")sortOrder
: Sort order ("asc" or "desc")Delete a document from the RAG system.
Parameters:
url
(required): URL of the document to deletenpm install -g @mcpservers/ragdocs
{ "mcpServers": { "ragdocs": { "command": "node", "args": ["@mcpservers/ragdocs"], "env": { "QDRANT_URL": "http://127.0.0.1:6333", "EMBEDDING_PROVIDER": "ollama" } } } }
Using Qdrant Cloud:
{ "mcpServers": { "ragdocs": { "command": "node", "args": ["@mcpservers/ragdocs"], "env": { "QDRANT_URL": "https://your-cluster-url.qdrant.tech", "QDRANT_API_KEY": "your-qdrant-api-key", "EMBEDDING_PROVIDER": "ollama" } } } }
Using OpenAI:
{ "mcpServers": { "ragdocs": { "command": "node", "args": ["@mcpservers/ragdocs"], "env": { "QDRANT_URL": "http://127.0.0.1:6333", "EMBEDDING_PROVIDER": "openai", "OPENAI_API_KEY": "your-api-key" } } } }
docker run -d --name qdrant -p 6333:6333 -p 6334:6334 qdrant/qdrant
QDRANT_URL
: URL of your Qdrant instance
QDRANT_API_KEY
: API key for Qdrant Cloud (required when using cloud instance)EMBEDDING_PROVIDER
: Choice of embedding provider ("ollama" or "openai", default: "ollama")OPENAI_API_KEY
: OpenAI API key (required if using OpenAI)EMBEDDING_MODEL
: Model to use for embeddings
Apache License 2.0