RAG Documentation
STDIOMCP server for retrieving and processing documentation through vector search for AI assistants.
MCP server for retrieving and processing documentation through vector search for AI assistants.
An MCP server implementation that provides tools for retrieving and processing documentation through vector search, enabling AI assistants to augment their responses with relevant documentation context.
search_documentation
list_sources
extract_urls
remove_documentation
list_queue
run_queue
clear_queue
add_documentation
The RAG Documentation tool is designed for:
The project includes a docker-compose.yml
file for easy containerized deployment. To start the services:
docker-compose up -d
To stop the services:
docker-compose down
The system includes a web interface that can be accessed after starting the Docker Compose services:
http://localhost:3030
The system uses Ollama as the default embedding provider for local embeddings generation, with OpenAI available as a fallback option. This setup prioritizes local processing while maintaining reliability through cloud-based fallback.
EMBEDDING_PROVIDER
: Choose the primary embedding provider ('ollama' or 'openai', default: 'ollama')EMBEDDING_MODEL
: Specify the model to use (optional)
OPENAI_API_KEY
: Required when using OpenAI as providerFALLBACK_PROVIDER
: Optional backup provider ('ollama' or 'openai')FALLBACK_MODEL
: Optional model for fallback providerAdd this to your cline_mcp_settings.json
:
{ "mcpServers": { "rag-docs": { "command": "node", "args": ["/path/to/your/mcp-ragdocs/build/index.js"], "env": { "EMBEDDING_PROVIDER": "ollama", // default "EMBEDDING_MODEL": "nomic-embed-text", // optional "OPENAI_API_KEY": "your-api-key-here", // required for fallback "FALLBACK_PROVIDER": "openai", // recommended for reliability "FALLBACK_MODEL": "nomic-embed-text", // optional "QDRANT_URL": "http://localhost:6333" }, "disabled": false, "autoApprove": [ "search_documentation", "list_sources", "extract_urls", "remove_documentation", "list_queue", "run_queue", "clear_queue", "add_documentation" ] } } }
Add this to your claude_desktop_config.json
:
{ "mcpServers": { "rag-docs": { "command": "node", "args": ["/path/to/your/mcp-ragdocs/build/index.js"], "env": { "EMBEDDING_PROVIDER": "ollama", // default "EMBEDDING_MODEL": "nomic-embed-text", // optional "OPENAI_API_KEY": "your-api-key-here", // required for fallback "FALLBACK_PROVIDER": "openai", // recommended for reliability "FALLBACK_MODEL": "nomic-embed-text", // optional "QDRANT_URL": "http://localhost:6333" } } } }
The system uses Ollama by default for efficient local embedding generation. For optimal reliability:
{ // Ollama is used by default, no need to specify EMBEDDING_PROVIDER "EMBEDDING_MODEL": "nomic-embed-text", // optional "FALLBACK_PROVIDER": "openai", "FALLBACK_MODEL": "text-embedding-3-small", "OPENAI_API_KEY": "your-api-key-here" }
This configuration ensures:
Note: The system will automatically use the appropriate vector dimensions based on the provider:
This project is a fork of qpd-v/mcp-ragdocs, originally developed by qpd-v. The original project provided the foundation for this implementation.
Special thanks to the original creator, qpd-v, for their innovative work on the initial version of this MCP server. This fork has been enhanced with additional features and improvements by Rahul Retnan.
If the MCP server fails to start due to a port conflict, follow these steps:
npx kill-port 3030
Restart the MCP server
If the issue persists, check for other processes using the port:
lsof -i :3030