Qdrant Vector Database
STDIOMCP server for enhanced Qdrant vector database functionality and semantic searches.
MCP server for enhanced Qdrant vector database functionality and semantic searches.
A Model Context Protocol (MCP) server for enhanced Qdrant vector database functionality. This server provides tools for managing Qdrant collections, adding documents, and performing semantic searches.
npm install -g better-qdrant-mcp-server
Or use it directly with npx:
npx better-qdrant-mcp-server
The server uses environment variables for configuration. You can set these in a .env
file in your project root:
# Qdrant Configuration
QDRANT_URL=http://localhost:6333
QDRANT_API_KEY=your_api_key_if_needed
# Embedding Service API Keys
OPENAI_API_KEY=your_openai_api_key
OPENROUTER_API_KEY=your_openrouter_api_key
OLLAMA_ENDPOINT=http://localhost:11434
To use this MCP server with Claude, add it to your MCP settings configuration file:
{ "mcpServers": { "better-qdrant": { "command": "npx", "args": ["better-qdrant-mcp-server"], "env": { "QDRANT_URL": "http://localhost:6333", "QDRANT_API_KEY": "your_api_key_if_needed", "DEFAULT_EMBEDDING_SERVICE": "ollama", "OPENAI_API_KEY": "your_openai_api_key", "OPENAI_ENDPOINT": "https://api.openai.com/v1", "OPENROUTER_API_KEY": "your_openrouter_api_key", "OPENROUTER_ENDPOINT": "https://api.openrouter.com/v1", "OLLAMA_ENDPOINT": "http://localhost:11434", "OLLAMA_MODEL": "nomic-embed-text" } } } }
use_mcp_tool
server_name: better-qdrant
tool_name: list_collections
arguments: {}
use_mcp_tool
server_name: better-qdrant
tool_name: add_documents
arguments: {
"filePath": "/path/to/your/document.pdf",
"collection": "my-collection",
"embeddingService": "openai",
"chunkSize": 1000,
"chunkOverlap": 200
}
use_mcp_tool
server_name: better-qdrant
tool_name: search
arguments: {
"query": "your search query",
"collection": "my-collection",
"embeddingService": "openai",
"limit": 5
}
use_mcp_tool
server_name: better-qdrant
tool_name: delete_collection
arguments: {
"collection": "my-collection"
}
MIT