Qdrant OpenAI Vector Search
STDIOVector search server using Qdrant database and OpenAI embeddings.
Vector search server using Qdrant database and OpenAI embeddings.
This MCP server provides vector search capabilities using Qdrant vector database and OpenAI embeddings.
To install Qdrant Vector Search Server for Claude Desktop automatically via Smithery:
npx -y @smithery/cli install @amansingh0311/mcp-qdrant-openai --client claude
Clone this repository:
git clone https://github.com/yourusername/mcp-qdrant-openai.git cd mcp-qdrant-openai
Install dependencies:
pip install -r requirements.txt
Set the following environment variables:
OPENAI_API_KEY
: Your OpenAI API keyQDRANT_URL
: URL to your Qdrant instance (default: "http://localhost:6333")QDRANT_API_KEY
: Your Qdrant API key (if applicable)python mcp_qdrant_server.py
mcp dev mcp_qdrant_server.py
mcp install mcp_qdrant_server.py --name "Qdrant-OpenAI"
Search a Qdrant collection using semantic search with OpenAI embeddings.
collection_name
: Name of the Qdrant collection to searchquery_text
: The search query in natural languagelimit
: Maximum number of results to return (default: 5)model
: OpenAI embedding model to use (default: text-embedding-3-small)List all available collections in the Qdrant database.
Get information about a specific collection.
collection_name
: Name of the collection to get information aboutOnce installed in Claude Desktop, you can use the tools like this:
What collections are available in my Qdrant database?
Search for documents about climate change in my "documents" collection.
Show me information about the "articles" collection.