icon for mcp server

PhantomPipe

HTTP-SSESTDIO

Lightweight Command & Control framework using MCP protocol and ngrok for remote access.

👻🎩📡PhantomPipe: MCP C2

Lightweight Command & Control over the MCP protocol, exposed via ngrok

A proof‑of‑concept C2 framework that uses Server‑Sent Events (SSE) and the MCP protocol for agent registration, command dispatch, and result collection. By tunneling through ngrok, you can quickly expose your C2 server to the public internet for rapid testing and demonstration.

image


Table of Contents


Architecture

At a high level, MCP C2 comprises three components:

  1. Server (server.py)

    • FastMCP application listening on port 8000
    • In-memory stores for agents, command queue, and results
    • Exposes MCP tools over SSE at /mcp
  2. Agent (agent.py)

    • Connects via SSE, registers itself, polls for commands, executes them locally, and uploads results
  3. CLI Client (client.py)

    • Enqueues commands for agents
    • Fetches full command/result history

All communication goes over the public SSE endpoint provided by ngrok.


Detailed Flow

flowchart TD %% ────────────────────── Local server ────────────────────── subgraph Local_Server["Local&nbsp;Server"] direction TB Srv["server.py<br/>FastMCP&nbsp;@&nbsp;port&nbsp;8000"] Stores["In‑memory&nbsp;Stores:<br/>•&nbsp;agents<br/>•&nbsp;command_queue<br/>•&nbsp;results"] Tools["Registered&nbsp;MCP&nbsp;Tools:<br/>•&nbsp;register_agent()<br/>•&nbsp;enqueue_command()<br/>•&nbsp;get_next_command()<br/>•&nbsp;upload_result()<br/>•&nbsp;get_results()"] Srv --> Stores Srv --> Tools end %% ────────────────────── ngrok tunnel ────────────────────── subgraph Ngrok_Tunnel["ngrok&nbsp;Tunnel"] NG["ngrok<br/>https\://YOUR_ID.ngrok.io&nbsp;↔&nbsp;localhost:8000"] end %% ────────────────────── public SSE endpoint ─────────────── subgraph Public_SSE["Public&nbsp;SSE&nbsp;Endpoint"] Pub["/mcp&nbsp;on&nbsp;https\://YOUR_ID.ngrok.io"] end %% ────────────────────── agents (× N) ────────────────────── subgraph Agents["Agents&nbsp;(agent.py)&nbsp;×&nbsp;N"] direction TB A1["1\\.&nbsp;SSE&nbsp;connect&nbsp;→&nbsp;/mcp"] A2["2\\.&nbsp;JSON‑RPC&nbsp;→&nbsp;register_agent(id)"] A3["3\\.&nbsp;Loop:&nbsp;get_next_command()"] A4["4\\.&nbsp;Execute&nbsp;shell&nbsp;command"] A5["5\\.&nbsp;JSON‑RPC&nbsp;→&nbsp;upload_result()"] A1 --> A2 --> A3 --> A4 --> A5 --> A3 end %% ────────────────────── CLI client ──────────────────────── subgraph CLI["CLI&nbsp;Client&nbsp;(client.py)"] direction TB C1["Enqueue:<br/>JSON‑RPC&nbsp;→&nbsp;enqueue_command(agent_id,&nbsp;cmd,&nbsp;args)"] C2["Fetch:<br/>JSON‑RPC&nbsp;→&nbsp;get_results(agent_id)"] end %% ────────────────────── communication flows ─────────────── Srv -- listens&nbsp;on&nbsp;port&nbsp;8000 --> Ngrok_Tunnel Ngrok_Tunnel -- forwards&nbsp;port --> Public_SSE Public_SSE -- SSE&nbsp;+&nbsp;RPC --> Agents Agents -- RPC --> Public_SSE Public_SSE -- RPC --> CLI CLI -- RPC --> Public_SSE %% ────────────────────── tool interactions ───────────────── Public_SSE -- register_agent --> Tools Tools -- store&nbsp;agent --> Stores Public_SSE -- enqueue_command --> Tools Tools -- append&nbsp;command --> Stores Public_SSE -- get_next_command --> Tools Tools -- read&nbsp;command --> Stores Public_SSE -- upload_result --> Tools Tools -- write&nbsp;result --> Stores Public_SSE -- get_results --> Tools Tools -- read&nbsp;results --> Stores

Diagram Explanation

  • Local Server
    • server.py runs a FastMCP app on port 8000.
    • In‑Memory Stores hold registered agents, pending commands, and uploaded results.
    • MCP Tools implement the core API:
    1. register_agent(agent_id)
  1. enqueue_command(agent_id, command, args)
  2. get_next_command(agent_id)
  3. upload_result(agent_id, command_id, exit_code, output)
  4. get_results(agent_id)
  • ngrok Tunnel

    • Maps your local port 8000 to a public URL (https://<ID>.ngrok.io).
    • Can be auto‑launched by server.py or manually via:
      ngrok http 8000 --region=us
  • Public SSE Endpoint

    • Clients connect to /mcp at the ngrok URL for SSE streams and JSON‑RPC tool calls.
  • Agent (agent.py)

    1. Establishes SSE connection.
    2. Calls register_agent().
    3. Loops: fetches next command (get_next_command()), runs it locally, and uploads the output (upload_result()).
  • CLI Client (client.py)

    • Uses the same SSE endpoint to dispatch (enqueue_command()) or retrieve (get_results()) work.
  • Communication Arrows

    • Server → ngrok: local port 8000 is forwarded.
    • ngrok → Public: exposes it to the internet.
    • Public → Agent/CLI: SSE stream and RPC calls.
    • Agent/CLI → Public: RPC calls back to the server.

Prerequisites

  • Python 3.8+
  • pip
  • ngrok (installed and on your PATH)
  • Python packages:
    pip install mcp pyngrok certifi

Installation

  1. Clone the repository
    git clone https://github.com/mbhatt1/PhantomPipe.git cd PhantomPipe
  2. Set up a virtual environment & install dependencies
    python3 -m venv venv source venv/bin/activate pip install --upgrade pip pip install mcp pyngrok certifi

ngrok Setup

  1. Authenticate your ngrok account
    ngrok authtoken YOUR_NGROK_AUTH_TOKEN
  2. Expose local port 8000
    The server.py script auto‑launches ngrok. To run manually:
    ngrok http 8000 --region=us
    Note the Forwarding URL (e.g. https://abcd1234.ngrok.io) and append /mcp for clients.

Usage

Start the Server

python server.py
  • Binds FastMCP on port 8000.
  • Launches ngrok and prints:
    [i] Starting ngrok tunnel on port 8000...
    [i] Public URL: https://<ID>.ngrok.io/mcp
    

Run the Agent

python agent.py \ --server-url https://<ID>.ngrok.io \ --agent-id myagent
  • Registers agent myagent.
  • Polls for commands, executes them, and uploads results.

Enqueue Commands (CLI)

python client.py \ --server-url https://<ID>.ngrok.io \ --agent-id myagent \ --command whoami \ --args -a -b
  • Dispatches whoami -a -b to myagent.

Fetch History (CLI)

python client.py \ --server-url https://<ID>.ngrok.io \ --agent-id myagent \ --history
  • Retrieves and prints all past command results for myagent.

Tool Definitions

Tool NameInput ParamsOutput
register_agent{ agent_id: string }{ ok: true }
enqueue_command{ agent_id, command: string, args: string[] }{ ok: true }
get_next_command{ agent_id: string }{ command_id, command, args } or empty fields
upload_result{ agent_id, command_id, exit_code: int, output: string }{ ok: true }
get_results{ agent_id: string }[{ command_id, exit_code, output, completed_at }]

Configuration

  • SSL/TLS
    Uses certifi for CA bundle on macOS.
    To disable verification (self‑signed certs):
    import ssl ssl._create_default_https_context = ssl._create_unverified_context
  • Agent ID
    Defaults to the machine’s hostname; override with --agent-id.
  • Persistence
    In-memory only (proof‑of‑concept).

Contributing

  1. Fork the repository
  2. Create a feature branch:
    git checkout -b feature/your-feature
  3. Commit & push your changes:
    git push origin feature/your-feature
  4. Open a Pull Request

License

This project is licensed under the MIT License. See LICENSE for details.

Youtube Demo

Watch on YouTube

© 2025 Shrewd. Play nice; hack hard.

Be the First to Experience MCP Now