
Perplexity
STDIOMCP server for internet research using Perplexity API with source citations
MCP server for internet research using Perplexity API with source citations
An MCP (Model Context Protocol) server that provides access to Perplexity AI's powerful search capabilities, including web search, academic research, financial data, and advanced filtering options.
The Perplexity MCP server offers six functions for comprehensive search and result management:
Each optimized for different use cases. All functions automatically return source URLs and save results locally if caching is enabled.
perplexity_search
: General web search with real-time information. Best for current events, general knowledge, and quick facts.
perplexity_academic_search
: Automatically filters to academic sources (arxiv.org, pubmed, journals). Best for research papers, scientific studies, and scholarly content.
perplexity_financial_search
: Optimized for financial domains and recent data. Best for stock analysis, earnings reports, SEC filings, and market trends.
perplexity_filtered_search
: Advanced search with multiple filtering options. Best when you need specific domain filtering, content types, or location-based results.
Manage previously saved search results for easy reference and reuse.
list_previous
: List all previous search queries with unique IDs, sorted by recency. Returns JSON array with query details.
get_previous_result
: Retrieve a previously cached search result by its unique 10-character ID.
./run.sh build
The server requires a Perplexity API key and supports various configuration options through environment variables:
PERPLEXITY_API_KEY
: Your Perplexity AI API keyPERPLEXITY_DEFAULT_MODEL
: Default model to use (default: "sonar")
sonar
: Fast, cost-effective search for quick factssonar-pro
: Comprehensive search with better depth and coveragePERPLEXITY_MAX_TOKENS
: Maximum tokens in response (default: 1024)PERPLEXITY_TEMPERATURE
: Response randomness 0-2 (default: 0.2)PERPLEXITY_TOP_P
: Nucleus sampling parameter (default: 0.9)PERPLEXITY_TOP_K
: Top-k sampling parameter (default: 0)PERPLEXITY_TIMEOUT
: Request timeout duration (default: 30s)PERPLEXITY_RETURN_IMAGES
: Include images by default (default: false)PERPLEXITY_RETURN_RELATED
: Include related questions by default (default: false)PERPLEXITY_RESULTS_ROOT_FOLDER
: Directory to store cached search results (default: empty/disabled)Run the server in MCP mode (default):
export PERPLEXITY_API_KEY="your-api-key" ./run.sh run # or directly: ./perplexity
Test individual functions directly from the command line:
export PERPLEXITY_API_KEY="your-api-key" # Test different search types ./run.sh search "latest AI news" sonar-pro ./run.sh academic "quantum computing" sonar-pro ./run.sh financial "AAPL earnings" sonar-pro ./run.sh filtered "renewable energy" sonar-pro # Cache management ./run.sh list # List previous queries ./run.sh get ABC123XYZ0 # Get cached result by ID
Run integration tests against the real Perplexity API:
export PERPLEXITY_API_KEY="your-api-key" ./run.sh integration-test
To use this server with an MCP client, add it to your client configuration:
{ "servers": { "perplexity": { "command": "path/to/perplexity", "env": { "PERPLEXITY_API_KEY": "your-api-key" } } } }
The server automatically caches search results when PERPLEXITY_RESULTS_ROOT_FOLDER
is configured:
/unique_id/result.md
with metadata in /unique_id/metadata.yaml
A1B2C3D4E5
)**Result ID:** ABC123XYZ0
# List previous searches echo '{"method": "tools/call", "params": {"name": "list_previous", "arguments": {}}}' | ./perplexity # Get specific result echo '{"method": "tools/call", "params": {"name": "get_previous_result", "arguments": {"unique_id": "A1B2C3D4E5"}}}' | ./perplexity
Perform a general web search.
Parameters:
query
(required): The search querymodel
: Choose 'sonar' for quick searches or 'sonar-pro' for comprehensive results (default: sonar)search_domain_filter
: Array of domains to includesearch_exclude_domains
: Array of domains to excludesearch_recency_filter
: Time filter (hour, day, week, month, year)return_images
: Include imagesreturn_related_questions
: Include related questionsmax_tokens
: Maximum response tokenstemperature
: Response randomness (0-2)date_range_start
: Start date (YYYY-MM-DD)date_range_end
: End date (YYYY-MM-DD)location
: Geo-specific search locationExample:
{ "query": "latest AI developments", "model": "sonar-pro", "search_recency_filter": "week", "return_citations": true }
Search academic papers and scholarly content.
Parameters:
query
(required): The academic search querysubject_area
: Academic subject (e.g., "Physics", "Computer Science")model
: Defaults to 'sonar-pro' for comprehensive academic resultssearch_domain_filter
: Array of academic domainssearch_recency_filter
: Time filtermax_tokens
: Maximum response tokenstemperature
: Response randomnessExample:
{ "query": "quantum computing applications", "subject_area": "Physics", "search_recency_filter": "year" }
Search financial data and SEC filings.
Parameters:
query
(required): The financial search queryticker
: Stock ticker symbol (e.g., "AAPL")company_name
: Company namereport_type
: Financial report type (e.g., "10-K", "10-Q", "8-K")model
: Defaults to 'sonar-pro' for comprehensive financial datasearch_recency_filter
: Time filterdate_range_start
: Report start datedate_range_end
: Report end datemax_tokens
: Maximum response tokensExample:
{ "query": "quarterly earnings", "ticker": "MSFT", "report_type": "10-Q", "search_recency_filter": "month" }
Advanced search with comprehensive filtering.
Parameters:
query
(required): The search querymodel
: Choose based on needs (defaults to sonar-pro)search_domain_filter
: Array of domains to includesearch_exclude_domains
: Array of domains to excludesearch_recency_filter
: Time filtercontent_type
: Type of content (news, academic, blog, etc.)file_type
: File type filter (pdf, doc, html, etc.)language
: Language filtercountry
: Country for geo-specific searchdate_range_start
: Start datedate_range_end
: End datereturn_citations
: Include citationsreturn_images
: Include imagesreturn_related_questions
: Include related questionsmax_tokens
: Maximum response tokenstemperature
: Response randomnesscustom_filters
: Object with additional key-value filtersExample:
{ "query": "renewable energy innovations", "content_type": "news", "language": "English", "country": "Germany", "search_recency_filter": "month", "custom_filters": { "industry": "energy", "technology": "solar" } }
List all previous search queries with metadata.
Parameters: None
Response: JSON array with query history, sorted by recency (most recent first).
Example:
[ { "query": "latest AI developments", "unique_id": "A1B2C3D4E5", "datetime": "2025-01-15T10:30:45Z", "search_type": "general" }, { "query": "quantum computing research", "unique_id": "X9Y8Z7W6V5", "datetime": "2025-01-15T09:15:30Z", "search_type": "academic" } ]
Retrieve a cached search result by unique ID.
Parameters:
unique_id
(required): The 10-character alphanumeric ID of the cached resultReturns: The complete markdown result from the cached search.
Example:
{ "unique_id": "A1B2C3D4E5" }
All search functions return responses in the following format:
Example response structure:
[Main search results content...]
## Source URLs
1. https://example.com/article1
2. https://example.com/article2
3. https://example.com/article3
## Detailed Sources
1. **Article Title**
URL: https://example.com/article1
Snippet: Brief excerpt from the article...
## Related Questions
- What are the latest developments?
- How does this compare to...?
**Result ID:** A1B2C3D4E5
Run unit tests:
./run.sh test
Run integration tests with real API:
./run.sh integration-test
The server follows clean architecture principles with separation of concerns:
perplexity/
├── cmd/
│ └── main.go # Thin entry point with terminal mode (~200 lines)
├── pkg/
│ ├── handler/ # MCP protocol layer
│ │ ├── handler.go # Main MCP handler
│ │ ├── tools.go # Tool definitions
│ │ └── search_handlers.go # Parameter extraction
│ ├── search/ # Core business logic
│ │ ├── types.go # Local search types
│ │ ├── search.go # Strongly-typed search functions
│ │ └── client.go # Perplexity API client
│ ├── cache/ # Result caching system
│ ├── config/ # Configuration management
│ └── types/ # Perplexity API types
├── test/
│ └── test.go # Integration tests
└── README.md
map[string]interface{}
The server handles various error conditions:
Errors are returned with descriptive messages to help diagnose issues.
MIT License - see LICENSE file for details.