
Penpot
STDIOAI-powered design workflow automation connecting Claude AI with Penpot designs
AI-powered design workflow automation connecting Claude AI with Penpot designs
AI-Powered Design Workflow Automation
Connect Claude AI and other LLMs to Penpot designs via Model Context Protocol
Penpot MCP is a revolutionary Model Context Protocol (MCP) server that bridges the gap between AI language models and Penpot, the open-source design and prototyping platform. This integration enables AI assistants like Claude (in both Claude Desktop and Cursor IDE) to understand, analyze, and interact with your design files programmatically.
Check out our demo video to see Penpot MCP in action:
pip install penpot-mcp
# Install directly with uvx (when published to PyPI) uvx penpot-mcp # For local development, use uvx with local path uvx --from . penpot-mcp # Or install in a project with uv uv add penpot-mcp
# Clone the repository git clone https://github.com/montevive/penpot-mcp.git cd penpot-mcp # Using uv (recommended) uv sync uv run penpot-mcp # Or using traditional pip python -m venv .venv source .venv/bin/activate # On Windows: .venv\Scripts\activate pip install -e .
Create a .env
file based on env.example
with your Penpot credentials:
PENPOT_API_URL=https://design.penpot.app/api
PENPOT_USERNAME=your_penpot_username
PENPOT_PASSWORD=your_penpot_password
PORT=5000
DEBUG=true
# Using uvx (when published to PyPI) uvx penpot-mcp # Using uvx for local development uvx --from . penpot-mcp # Using uv in a project (recommended for local development) uv run penpot-mcp # Using the entry point (if installed) penpot-mcp # Or using the module directly python -m penpot_mcp.server.mcp_server
To debug the MCP server, you can:
.env
file by setting DEBUG=true
# Test API connection with debug output python -m penpot_mcp.api.penpot_api --debug list-projects # Get details for a specific project python -m penpot_mcp.api.penpot_api --debug get-project --id YOUR_PROJECT_ID # List files in a project python -m penpot_mcp.api.penpot_api --debug list-files --project-id YOUR_PROJECT_ID # Get file details python -m penpot_mcp.api.penpot_api --debug get-file --file-id YOUR_FILE_ID
The package includes utility command-line tools:
# Generate a tree visualization of a Penpot file penpot-tree path/to/penpot_file.json # Validate a Penpot file against the schema penpot-validate path/to/penpot_file.json
# Start your MCP server in one terminal python -m penpot_mcp.server.mcp_server # In another terminal, use mcp-cli to monitor and interact with your server python -m mcp.cli monitor python -m penpot_mcp.server.mcp_server # Or connect to an already running server on a specific port python -m mcp.cli monitor --port 5000
# Start your MCP server in one terminal python -m penpot_mcp.server.mcp_server # In another terminal, run the MCP Inspector (requires Node.js) npx @modelcontextprotocol/inspector
# Run the example client penpot-client
server://info
- Server status and informationpenpot://schema
- Penpot API schema as JSONpenpot://tree-schema
- Penpot object tree schema as JSONrendered-component://{component_id}
- Rendered component imagespenpot://cached-files
- List of cached Penpot fileslist_projects
- List all Penpot projectsget_project_files
- Get files for a specific projectget_file
- Retrieve a Penpot file by its ID and cache itexport_object
- Export a Penpot object as an imageget_object_tree
- Get the object tree structure for a Penpot objectsearch_object
- Search for objects within a Penpot file by nameThe Penpot MCP server can be integrated with AI assistants using the Model Context Protocol. It supports both Claude Desktop and Cursor IDE for seamless design workflow automation.
For detailed Claude Desktop setup instructions, see CLAUDE_INTEGRATION.md.
Add the following configuration to your Claude Desktop config file (~/Library/Application Support/Claude/claude_desktop_config.json
on macOS or %APPDATA%\Claude\claude_desktop_config.json
on Windows):
{ "mcpServers": { "penpot": { "command": "uvx", "args": ["penpot-mcp"], "env": { "PENPOT_API_URL": "https://design.penpot.app/api", "PENPOT_USERNAME": "your_penpot_username", "PENPOT_PASSWORD": "your_penpot_password" } } } }
Cursor IDE supports MCP servers through its AI integration features. To configure Penpot MCP with Cursor:
Install the MCP server (if not already installed):
pip install penpot-mcp
Configure Cursor settings by adding the MCP server to your Cursor configuration. Open Cursor settings and add:
{ "mcpServers": { "penpot": { "command": "uvx", "args": ["penpot-mcp"], "env": { "PENPOT_API_URL": "https://design.penpot.app/api", "PENPOT_USERNAME": "your_penpot_username", "PENPOT_PASSWORD": "your_penpot_password" } } } }
Alternative: Use environment variables by creating a .env
file in your project root:
PENPOT_API_URL=https://design.penpot.app/api PENPOT_USERNAME=your_penpot_username PENPOT_PASSWORD=your_penpot_password
Start the MCP server in your project:
# In your project directory penpot-mcp
Use in Cursor: Once configured, you can interact with your Penpot designs directly in Cursor by asking questions like:
Both Claude Desktop and Cursor integration provide:
penpot_mcp/
├── api/ # Penpot API client
├── server/ # MCP server implementation
│ ├── mcp_server.py # Main MCP server
│ └── client.py # Client implementation
├── tools/ # Utility tools
│ ├── cli/ # Command-line interfaces
│ └── penpot_tree.py # Penpot object tree visualization
├── resources/ # Resource files and schemas
└── utils/ # Helper utilities
The project uses pytest for testing:
# Using uv (recommended) uv sync --extra dev uv run pytest # Run with coverage uv run pytest --cov=penpot_mcp tests/ # Using traditional pip pip install -e ".[dev]" pytest pytest --cov=penpot_mcp tests/
# Using uv (recommended) uv sync --extra dev # Set up pre-commit hooks uv run pre-commit install # Run linting uv run python lint.py # Auto-fix linting issues uv run python lint.py --autofix # Using traditional pip pip install -r requirements-dev.txt pre-commit install ./lint.py ./lint.py --autofix
Contributions are welcome! Please feel free to submit a Pull Request.
git checkout -b feature/amazing-feature
)git commit -m 'Add some amazing feature'
)git push origin feature/amazing-feature
)Please make sure your code follows the project's coding standards and includes appropriate tests.
This project is licensed under the MIT License - see the LICENSE file for details.