Parquet Search Assistant
STDIOMCP server providing web search and similarity search tools for Claude Desktop.
MCP server providing web search and similarity search tools for Claude Desktop.
A powerful MCP (Model Control Protocol) server that provides tools for performing web searches and finding similar content. This server is designed to work with Claude Desktop and offers two main functionalities:
This server is particularly useful for:
To install Parquet MCP Server for Claude Desktop automatically via Smithery:
npx -y @smithery/cli install @DeepSpringAI/parquet_mcp_server --client claude
git clone ... cd parquet_mcp_server
uv venv .venv\Scripts\activate # On Windows source .venv/bin/activate # On macOS/Linux
uv pip install -e .
Create a .env
file with the following variables:
EMBEDDING_URL=http://sample-url.com/api/embed # URL for the embedding service OLLAMA_URL=http://sample-url.com/ # URL for Ollama server EMBEDDING_MODEL=sample-model # Model to use for generating embeddings SEARCHAPI_API_KEY=your_searchapi_api_key FIRECRAWL_API_KEY=your_firecrawl_api_key VOYAGE_API_KEY=your_voyage_api_key AZURE_OPENAI_ENDPOINT=http://sample-url.com/azure_openai AZURE_OPENAI_API_KEY=your_azure_openai_api_key
Add this to your Claude Desktop configuration file (claude_desktop_config.json
):
{ "mcpServers": { "parquet-mcp-server": { "command": "uv", "args": [ "--directory", "/home/${USER}/workspace/parquet_mcp_server/src/parquet_mcp_server", "run", "main.py" ] } } }
The server provides two main tools:
Search Web: Perform a web search and scrape results
queries
: List of search queriespage_number
: Page number for the search results (defaults to 1)Extract Info from Search: Extract relevant information from previous searches
queries
: List of search queries to mergeHere are some example prompts you can use with the agent:
"Please perform a web search for 'macbook' and 'laptop' and scrape the results from page 1"
"Please extract relevant information from the previous searches for 'macbook'"
The project includes a comprehensive test suite in the src/tests
directory. You can run all tests using:
python src/tests/run_tests.py
Or run individual tests:
# Test Web Search python src/tests/test_search_web.py # Test Extract Info from Search python src/tests/test_extract_info_from_search.py
You can also test the server using the client directly:
from parquet_mcp_server.client import ( perform_search_and_scrape, # New web search function find_similar_chunks # New extract info function ) # Perform a web search perform_search_and_scrape(["macbook", "laptop"], page_number=1) # Extract information from the search results find_similar_chunks(["macbook"])
.env
file are correct.env
file are correctTo perform vector similarity searches in PostgreSQL, you can use the following function:
-- Create the function for vector similarity search CREATE OR REPLACE FUNCTION match_web_search( query_embedding vector(1024), -- Adjusted vector size match_threshold float, match_count int -- User-defined limit for number of results ) RETURNS TABLE ( id bigint, metadata jsonb, text TEXT, -- Added text column to the result date TIMESTAMP, -- Using the date column instead of created_at similarity float ) LANGUAGE plpgsql AS $$ BEGIN RETURN QUERY SELECT web_search.id, web_search.metadata, web_search.text, -- Returning the full text of the chunk web_search.date, -- Returning the date timestamp 1 - (web_search.embedding <=> query_embedding) as similarity FROM web_search WHERE 1 - (web_search.embedding <=> query_embedding) > match_threshold ORDER BY web_search.date DESC, -- Sort by date in descending order (newest first) web_search.embedding <=> query_embedding -- Sort by similarity LIMIT match_count; -- Limit the results to the match_count specified by the user END; $$;
This function allows you to perform similarity searches on vector embeddings stored in a PostgreSQL database, returning results that meet a specified similarity threshold and limiting the number of results based on user input. The results are sorted by date and similarity.
CREATE TABLE web_search (
id SERIAL PRIMARY KEY,
text TEXT,
metadata JSONB,
embedding VECTOR(1024),
-- This will be auto-updated
date TIMESTAMP DEFAULT NOW()
);