icon for mcp server

PAIML Agent Toolkit

STDIOOfficial

Zero-configuration AI context generation toolkit for codebase analysis and refactoring.

PAIML MCP Agent Toolkit

CI/CD MCP Compatible License: MIT

Zero-configuration AI context generation system that analyzes any codebase instantly through CLI, MCP, or HTTP interfaces. Built by Pragmatic AI Labs.

🚀 Installation

curl -sSfL https://raw.githubusercontent.com/paiml/paiml-mcp-agent-toolkit/master/scripts/install.sh | sh

📋 Tool Usage

CLI Interface

# Zero-configuration context generation pmat context # Auto-detects language pmat context --format json # JSON output pmat context rust # Force language # Code analysis pmat analyze complexity --top-files 5 # Complexity analysis pmat analyze churn --days 30 # Git history analysis pmat analyze dag --target-nodes 25 # Dependency graph pmat analyze dead-code --format json # Dead code detection pmat analyze satd --top-files 10 # Technical debt pmat analyze deep-context --format json # Comprehensive analysis pmat analyze big-o # Big-O complexity analysis pmat analyze makefile-lint # Makefile quality linting pmat analyze proof-annotations # Provability analysis pmat analyze graph-metrics # Graph centrality metrics pmat analyze name-similarity "function_name" # Semantic name search # Project scaffolding pmat scaffold rust --templates makefile,readme,gitignore pmat list # Available templates # Refactoring engine pmat refactor interactive # Interactive refactoring pmat refactor serve --config refactor.json # Batch refactoring pmat refactor status # Check refactor progress pmat refactor resume # Resume from checkpoint # Demo and visualization pmat demo --format table # CLI demo pmat demo --web --port 8080 # Web interface pmat demo --repo https://github.com/user/repo # Analyze GitHub repo
💫 See CLI usage in action
Context and code analysis:

Running demos/visualization:

MCP Integration (Claude Code)

# Add to Claude Code claude mcp add paiml-toolkit ~/.local/bin/pmat
💫 See Claude Code usage in action

Available MCP tools:

  • generate_template - Generate project files from templates
  • scaffold_project - Generate complete project structure
  • analyze_complexity - Code complexity metrics
  • analyze_code_churn - Git history analysis
  • analyze_dag - Dependency graph generation
  • analyze_dead_code - Dead code detection
  • analyze_deep_context - Comprehensive analysis
  • generate_context - Zero-config context generation
  • analyze_big_o - Big-O complexity analysis with confidence scores
  • analyze_makefile_lint - Lint Makefiles with 50+ quality rules
  • analyze_proof_annotations - Lightweight formal verification
  • analyze_graph_metrics - Graph centrality and PageRank analysis
  • refactor_interactive - Interactive refactoring with explanations

HTTP API

# Start server pmat serve --port 8080 --cors # API endpoints curl "http://localhost:8080/health" curl "http://localhost:8080/api/v1/analyze/complexity?top_files=5" curl "http://localhost:8080/api/v1/templates" # POST analysis curl -X POST "http://localhost:8080/api/v1/analyze/deep-context" \ -H "Content-Type: application/json" \ -d '{"project_path":"./","include":["ast","complexity","churn"]}'

🔧 Supported Languages

  • Rust - Complete AST analysis, complexity metrics
  • TypeScript/JavaScript - Full parsing and analysis
  • Python - AST analysis and code metrics
  • C/C++ - Goto tracking, macro analysis, memory safety indicators
  • Cython - Hybrid Python/C analysis

📚 Documentation

Feature Documentation

Additional Features

  • Code Quality Tools

    • pmat analyze makefile-lint - Lint Makefiles with 50+ quality rules
    • pmat excellence-tracker - Track code quality metrics over time
    • pmat refactor serve - Batch refactoring with checkpoints
    • pmat refactor interactive - Interactive refactoring with explanations
  • Advanced Analysis

    • pmat analyze tdg - Calculate Technical Debt Gradient
    • pmat analyze proof-annotations - Lightweight formal verification
    • pmat analyze defect-prediction - ML-based defect prediction
    • pmat analyze name-similarity - Semantic name search with embeddings
    • pmat analyze big-o - Big-O complexity with confidence scores
    • pmat analyze graph-metrics - PageRank and centrality metrics
    • pmat analyze incremental-coverage - Coverage changes since base branch

📊 Output Formats

  • JSON - Structured data for tools and APIs
  • Markdown - Human-readable reports
  • SARIF - Static analysis format for IDEs
  • Mermaid - Dependency graphs and diagrams

🎯 Use Cases

For AI Agents

  • Context Generation: Give AI perfect project understanding
  • Code Analysis: Deterministic metrics and facts
  • Template Generation: Scaffolding with best practices

For Developers

  • Code Reviews: Automated complexity and quality analysis
  • Technical Debt: SATD detection and prioritization
  • Onboarding: Quick project understanding
  • CI/CD: Integrate quality gates and analysis

For Teams

  • Documentation: Auto-generated project overviews
  • Quality Gates: Automated quality scoring
  • Dependency Analysis: Visual dependency graphs
  • Project Health: Comprehensive health metrics

📚 Documentation

🧪 Testing

The project uses a distributed test architecture for fast feedback:

# Run specific test suites make test-unit # <10s - Core logic tests make test-services # <30s - Service integration make test-protocols # <45s - Protocol validation make test-e2e # <120s - Full system tests make test-performance # Performance regression # Run all tests in parallel make test-all # Coverage analysis make coverage-stratified

🤝 Contributing

  1. Fork the repository
  2. Create a feature branch
  3. Run make test-fast for validation
  4. Submit a pull request

📄 License

MIT License - see LICENSE file for details.


Built with ❤️ by Pragmatic AI Labs

Be the First to Experience MCP Now