icon for mcp server

MCP Creator

HTTP-SSESTDIO

AI-guided MCP server creation through intelligent templates and workflows

MCP-Creator-MCP 🚀

A meta-MCP server that democratizes MCP server creation through AI-guided workflows and intelligent templates.

Transform vague ideas into production-ready MCP servers with minimal cognitive overhead and maximum structural elegance.

🎯 Vision

Creating MCP servers should be as simple as describing what you want. MCP Creator bridges the gap between idea and implementation, providing intelligent guidance, proven templates, and streamlined workflows.

✨ Core Features

  • 🤖 AI-Guided Creation: Get intelligent suggestions and best practices tailored to your use case
  • 📚 Template Library: Curated collection of proven MCP server patterns
  • 🔄 Workflow Engine: Save and reuse creation workflows for consistent results
  • 🎨 Gradio Interface: User-friendly web interface for visual server management
  • 🔧 Multi-Language Support: Python, Gradio, and expanding language ecosystem
  • 📊 Built-in Monitoring: Server health checks and operational visibility
  • 🛡️ Best Practices: Automated validation and security recommendations

alt text

🚀 Quick Start

Prerequisites

  • Python 3.10 or higher
  • uv package manager
  • Claude Desktop (for MCP integration)

Installation

# Clone and set up the project git clone https://github.com/angrysky56/mcp-creator-mcp.git cd mcp-creator-mcp # Create and activate virtual environment uv venv --python 3.12 --seed source .venv/bin/activate # Install dependencies uv add -e . # Configure environment cp .env.example .env # Edit .env with your API keys (see Configuration section)

Basic Usage

Option 1: As an MCP Server (Recommended)

  1. Configure Claude Desktop:

    # Copy the example config cp example_mcp_config.json ~/path/to/claude_desktop_config.json # Edit paths and API keys as needed
  2. Start using in Claude Desktop:

    • Restart Claude Desktop
    • Use tools like create_mcp_server, list_templates, get_ai_guidance

Option 2: Standalone Interface

# Launch the Gradio interface uv run gradio_interface.py # Or use the CLI uv run mcp-creator-gui

📖 Configuration

Environment Variables

Create a .env file with your settings:

# AI Model Providers (at least one required for AI guidance) ANTHROPIC_API_KEY=your_anthropic_key_here OPENAI_API_KEY=your_openai_key_here OLLAMA_BASE_URL=http://localhost:11434 # MCP Creator Settings DEFAULT_OUTPUT_DIR=./mcp_servers LOG_LEVEL=INFO # Gradio Interface GRADIO_SERVER_PORT=7860 GRADIO_SHARE=false

Claude Desktop Integration

  1. Edit your Claude Desktop config (usually at ~/.config/Claude/claude_desktop_config.json):
{ "mcpServers": { "mcp-creator": { "command": "uv", "args": [ "--directory", "/path/to/mcp-creator-mcp", "run", "python", "main.py" ], "env": { "ANTHROPIC_API_KEY": "your_key_here" } } } }
  1. Restart Claude Desktop

🛠️ Usage Examples

Creating Your First MCP Server

# In Claude Desktop, ask: "Create an MCP server called 'weather_helper' that provides weather data and forecasts" # Or use the tool directly: create_mcp_server( name="weather_helper", description="Provides weather data and forecasts", language="python", template_type="basic", features=["tools", "resources"] )

Getting AI Guidance

# Ask for specific guidance: get_ai_guidance( topic="security", server_type="database" ) # Or access guidance resources: # Use resource: mcp-creator://guidance/sampling

Managing Templates

# List available templates list_templates() # Filter by language list_templates(language="python")

🏗️ Architecture

Core Principles

  • Simplicity: Each component has a single, clear responsibility
  • Predictability: Consistent patterns reduce cognitive load
  • Extensibility: Modular design enables easy customization
  • Reliability: Comprehensive error handling and graceful degradation

Component Overview

├── src/mcp_creator/
│   ├── core/              # Core server functionality
│   │   ├── config.py      # Clean configuration management
│   │   ├── template_manager.py  # Template system
│   │   └── server_generator.py # Server creation engine
│   ├── workflows/         # Workflow management
│   ├── ai_guidance/       # AI assistance system
│   └── utils/             # Shared utilities
├── templates/             # Template library
├── ai_guidance/           # Guidance content
└── mcp_servers/          # Generated servers (default)

📚 Template System

Available Templates

  • Python Basic: Clean, well-structured foundation
  • Python with Resources: Database and API integration patterns
  • Python with Sampling: AI-enhanced server capabilities
  • Gradio Interface: Interactive UI with MCP integration

Creating Custom Templates

Templates use Jinja2 with clean abstractions:

# Template structure templates/languages/{language}/{template_name}/ ├── metadata.json # Template configuration ├── template.py.j2 # Main template file └── README.md.j2 # Documentation template

🔄 Workflow System

Saving Workflows

save_workflow( name="Database MCP Server", description="Complete database integration workflow", steps=[ { "id": "collect_requirements", "type": "input", "config": {"fields": ["db_type", "connection_string"]} }, { "id": "security_review", "type": "ai_guidance", "config": {"topic": "database_security"} }, { "id": "generate_server", "type": "generation", "config": {"template": "python:database"} } ] )

🔧 Development

Project Structure

The codebase follows clean architecture principles:

  • Separation of Concerns: Each module has a single responsibility
  • Dependency Injection: Components are loosely coupled
  • Error Boundaries: Graceful failure handling throughout
  • Type Safety: Comprehensive type hints and validation

Adding New Templates

  1. Create template directory: templates/languages/{lang}/{name}/
  2. Add metadata.json with template configuration
  3. Create template.{ext}.j2 with Jinja2 template
  4. Test with the template manager

Contributing

  1. Fork the repository
  2. Create a feature branch with descriptive name
  3. Follow the existing code patterns and style
  4. Add tests for new functionality
  5. Submit a pull request with clear description

🛡️ Security & Best Practices

Built-in Protections

  • Input Validation: All user inputs are validated and sanitized
  • Process Management: Proper cleanup prevents resource leaks
  • Error Handling: Graceful failure with helpful messages
  • Logging: Comprehensive operational visibility

Recommended Practices

  • Use environment variables for sensitive data
  • Implement rate limiting for production deployments
  • Regular security audits of generated servers
  • Monitor server performance and resource usage

🐛 Troubleshooting

Common Issues

Server won't start:

# Check dependencies uv add -e . # Verify configuration cat .env # Check logs tail -f logs/mcp-creator.log

Claude Desktop integration:

# Verify config file syntax python -m json.tool claude_desktop_config.json # Check server connectivity python main.py --test

Template errors:

# List available templates uv run python -c "from src.mcp_creator import TemplateManager; print(TemplateManager().list_templates())"

📊 Monitoring & Operations

Health Checks

The server provides built-in health monitoring:

  • Resource usage tracking
  • Error rate monitoring
  • Performance metrics
  • Template validation

Logging

All operations are logged to stderr (MCP compliance):

# View logs in real-time python main.py 2>&1 | tee mcp-creator.log

🚀 What's Next?

  • Multi-language expansion: TypeScript, Go, Rust templates
  • Cloud deployment: Integration with major cloud platforms
  • Collaboration features: Team workflows and template sharing
  • Advanced AI: Enhanced code generation and optimization
  • Marketplace: Community template and workflow ecosystem

📝 License

MIT License - see LICENSE for details.

🤝 Contributing

We welcome contributions! Please see CONTRIBUTING.md for guidelines.

💬 Support


Built with ❤️ for the MCP community

MCP Creator makes sophisticated AI integrations accessible to everyone, from hobbyists to enterprise teams.

Be the First to Experience MCP Now