icon for mcp server

KumoRFM

STDIO

MCP server for KumoRFM relational foundation model predictive analytics and graph processing

KumoRFM MCP Server

KumoRFMNotebooksBlogGet an API key

PyPI - Python Version PyPI Status Slack

🔬 MCP server to query KumoRFM in your agentic flows

📖 Introduction

KumoRFM is a pre-trained Relational Foundation Model (RFM) that generates training-free predictions on any relational multi-table data by interpreting the data as a (temporal) heterogeneous graph. It can be queried via the Predictive Query Language (PQL).

This repository hosts a full-featured MCP (Model Context Protocol) server that empowers AI assistants with KumoRFM intelligence. This server enables:

  • 🕸️ Build, manage, and visualize graphs directly from CSV or Parquet files
  • 💬 Convert natural language into PQL queries for seamless interaction
  • 🤖 Query, analyze, and evaluate predictions from KumoRFM (missing value imputation, temporal forecasting, etc) all without any training required

🚀 Installation

🐍 Traditional MCP Server

The KumoRFM MCP server is available for Python 3.10 and above. To install, simply run:

pip install kumo-rfm-mcp

Add to your MCP configuration file (e.g., Claude Desktop's mcp_config.json):

{ "mcpServers": { "kumo-rfm": { "command": "python", "args": ["-m", "kumo_rfm_mcp.server"], "env": { "KUMO_API_KEY": "your_api_key_here", } } } }

⚡ MCP Bundle

We provide a single-click installation via our MCP Bundle (MCPB) (e.g., for integration into Claude Desktop):

  1. Download the dxt file from here
  2. Double click to install

🎬 Claude Desktop Demo

See here for the transcript.

https://github.com/user-attachments/assets/56192b0b-d9df-425f-9c10-8517c754420f

🔬 Agentic Workflows

You can use the KumoRFM MCP directly in your agentic workflows:


[Example]

from crewai import Agent
from crewai_tools import MCPServerAdapter
from mcp import StdioServerParameters

params = StdioServerParameters( command='python', args=['-m', 'kumo_rfm_mcp.server'], env={'KUMO_API_KEY': ...}, )
with MCPServerAdapter(params) as mcp_tools: agent = Agent( role=..., goal=..., backstory=..., tools=mcp_tools, )

[Example]

from langchain_mcp_adapter.client MultiServerMCPClient
from langgraph.prebuilt import create_react_agent

client = MultiServerMCPClient({ 'kumo-rfm': { 'command': 'python', 'args': ['-m', 'kumo_rfm_mcp.server'], 'env': {'KUMO_API_KEY': ...}, } })
agent = create_react_agent( llm=..., tools=await client.get_tools(), )

[Example]

from agents import Agent
from agents.mcp import MCPServerStdio

async with MCPServerStdio(params={ 'command': 'python', 'args': ['-m', 'kumo_rfm_mcp.server'], 'env': {'KUMO_API_KEY': ...}, }) as server: agent = Agent( name=..., instructions=..., mcp_servers=[server], )

from claude_code_sdk import query, ClaudeCodeOptions

mcp_servers = { 'kumo-rfm': { 'command': 'python', 'args': ['-m', 'kumo_rfm_mcp.server'], 'env': {'KUMO_API_KEY': ...}, } }
async for message in query( prompt=..., options=ClaudeCodeOptions( system_prompt=..., mcp_servers=mcp_servers, permission_mode='default', ), ): ...

Browse our examples to get started with agentic workflows powered by KumoRFM.

📚 Available Tools

I/O Operations

  • 🔍 find_table_files - Searching for tabular files: Find all table-like files (e.g., CSV, Parquet) in a directory.
  • 🧐 inspect_table_files - Analyzing table structure: Inspect the first rows of table-like files.

Graph Management

  • 🗂️ inspect_graph_metadata - Reviewing graph schema: Inspect the current graph metadata.
  • 🔄 update_graph_metadata - Updating graph schema: Partially update the current graph metadata.
  • 🖼️ get_mermaid - Creating graph diagram: Return the graph as a Mermaid entity relationship diagram.
  • 🕸️ materialize_graph - Assembling graph: Materialize the graph based on the current state of the graph metadata to make it available for inference operations.
  • 📂 lookup_table_rows - Retrieving table entries: Lookup rows in the raw data frame of a table for a list of primary keys.

Model Execution

  • 🤖 predict - Running predictive query: Execute a predictive query and return model predictions.
  • 📊 evaluate - Evaluating predictive query: Evaluate a predictive query and return performance metrics which compares predictions against known ground-truth labels from historical examples.

🔧 Configuration

Environment Variables

  • KUMO_API_KEY: Authentication is needed once before predicting or evaluating with the KumoRFM model. You can generate your KumoRFM API key for free here. If not set, you can also authenticate on-the-fly in individual session via an OAuth2 flow.

We love your feedback! :heart:

As you work with KumoRFM, if you encounter any problems or things that are confusing or don't work quite right, please open a new :octocat:issue. You can also submit general feedback and suggestions here. Join our Slack!

Be the First to Experience MCP Now