Hayhooks
STDIODeploy and serve Haystack Pipelines and Agents as REST APIs via MCP protocol
Deploy and serve Haystack Pipelines and Agents as REST APIs via MCP protocol
Hayhooks makes it easy to deploy and serve Haystack Pipelines and Agents.
With Hayhooks, you can:
📚 For detailed guides, examples, and API reference, check out our comprehensive documentation.
# Install Hayhooks pip install hayhooks
hayhooks run
Create a minimal agent wrapper with streaming chat support and a simple HTTP POST API:
from typing import AsyncGenerator from haystack.components.agents import Agent from haystack.dataclasses import ChatMessage from haystack.tools import Tool from haystack.components.generators.chat import OpenAIChatGenerator from hayhooks import BasePipelineWrapper, async_streaming_generator # Define a Haystack Tool that provides weather information for a given location. def weather_function(location): return f"The weather in {location} is sunny." weather_tool = Tool( name="weather_tool", description="Provides weather information for a given location.", parameters={ "type": "object", "properties": {"location": {"type": "string"}}, "required": ["location"], }, function=weather_function, ) class PipelineWrapper(BasePipelineWrapper): def setup(self) -> None: self.agent = Agent( chat_generator=OpenAIChatGenerator(model="gpt-4o-mini"), system_prompt="You're a helpful agent", tools=[weather_tool], ) # This will create a POST /my_agent/run endpoint # `question` will be the input argument and will be auto-validated by a Pydantic model async def run_api_async(self, question: str) -> str: result = await self.agent.run_async({"messages": [ChatMessage.from_user(question)]}) return result["replies"][0].text # This will create an OpenAI-compatible /chat/completions endpoint async def run_chat_completion_async( self, model: str, messages: list[dict], body: dict ) -> AsyncGenerator[str, None]: chat_messages = [ ChatMessage.from_openai_dict_format(message) for message in messages ] return async_streaming_generator( pipeline=self.agent, pipeline_run_args={ "messages": chat_messages, }, )
Save as my_agent_dir/pipeline_wrapper.py.
hayhooks pipeline deploy-files -n my_agent ./my_agent_dir
Call the HTTP POST API (/my_agent/run):
curl -X POST http://localhost:1416/my_agent/run \ -H 'Content-Type: application/json' \ -d '{"question": "What can you do?"}'
Call the OpenAI-compatible chat completion API (streaming enabled):
curl -X POST http://localhost:1416/chat/completions \ -H 'Content-Type: application/json' \ -d '{ "model": "my_agent", "messages": [{"role": "user", "content": "What can you do?"}] }'
Or integrate it with Open WebUI and start chatting with it!
Hayhooks is actively maintained by the deepset team.