Gemini Video Recognition
STDIOMCP server providing image, audio, and video recognition using Google's Gemini AI.
MCP server providing image, audio, and video recognition using Google's Gemini AI.
An MCP (Model Context Protocol) server that provides tools for image, audio, and video recognition using Google's Gemini AI.
Clone the repository:
git clone https://github.com/yourusername/mcp-video-recognition.git cd mcp-video-recognition
Install dependencies:
npm install
Build the project:
npm run build
To integrate this MCP server with Cline or other MCP clients via configuration files:
Open your Cline settings:
Add the server configuration to the mcpServers
object:
{ "mcpServers": { "video-recognition": { "command": "node", "args": [ "/path/to/mcp-video-recognition/dist/index.js" ], "disabled": false, "autoApprove": [] } } }
Replace /path/to/mcp-video-recognition/dist/index.js
with the actual path to the index.js
file in your project directory. Use forward slashes (/) or double backslashes (\\) for the path on Windows.
Save the settings file. Cline should automatically connect to the server.
The server is configured using environment variables:
GOOGLE_API_KEY
(required): Your Google Gemini API keyTRANSPORT_TYPE
: Transport type to use (stdio
or sse
, defaults to stdio
)PORT
: Port number for SSE transport (defaults to 3000)LOG_LEVEL
: Logging level (verbose
, debug
, info
, warn
, error
, defaults to info
)GOOGLE_API_KEY=your_api_key npm start
GOOGLE_API_KEY=your_api_key TRANSPORT_TYPE=sse PORT=3000 npm start
The server provides three tools that can be called by MCP clients:
{ "name": "image_recognition", "arguments": { "filepath": "/path/to/image.jpg", "prompt": "Describe this image in detail", "modelname": "gemini-2.0-flash" } }
{ "name": "audio_recognition", "arguments": { "filepath": "/path/to/audio.mp3", "prompt": "Transcribe this audio", "modelname": "gemini-2.0-flash" } }
{ "name": "video_recognition", "arguments": { "filepath": "/path/to/video.mp4", "prompt": "Describe what happens in this video", "modelname": "gemini-2.0-flash" } }
All tools accept the following parameters:
filepath
(required): Path to the media file to analyzeprompt
(optional): Custom prompt for the recognition (defaults to "Describe this content")modelname
(optional): Gemini model to use for recognition (defaults to "gemini-2.0-flash")GOOGLE_API_KEY=your_api_key npm run dev
src/index.ts
: Entry pointsrc/server.ts
: MCP server implementationsrc/tools/
: Tool implementationssrc/services/
: Service implementations (Gemini API)src/types/
: Type definitionssrc/utils/
: Utility functionsMIT