
Gemini DeepSearch
STDIOAutomated research agent using Gemini models and Google Search for deep, multi-step web research.
Automated research agent using Gemini models and Google Search for deep, multi-step web research.
Gemini DeepSearch MCP is an automated research agent that leverages Google Gemini models and Google Search to perform deep, multi-step web research. It generates sophisticated queries, synthesizes information from search results, identifies knowledge gaps, and produces high-quality, citation-rich answers.
Start the LangGraph development server with Studio UI:
make dev
Start the MCP server with stdio transport for integration with MCP clients:
make local
Run the test suite:
make test
Test the MCP stdio server:
make test_mcp
Use MCP inspector
make inspect
With Langsmith tracing
GEMINI_API_KEY=AI******* LANGSMITH_API_KEY=ls******* LANGSMITH_TRACING=true make inspect
The deep_search
tool accepts:
HTTP MCP Server (Development mode):
Stdio MCP Server (Claude Desktop integration):
The stdio MCP server writes results to a JSON file in the system temp directory to optimize token usage. The JSON file contains the same answer
and sources
data as the HTTP version, but is accessed via file path rather than returned directly.
GEMINI_API_KEY
environment variableInstall directly using uvx:
uvx install gemini-deepsearch-mcp
To use the MCP server with Claude Desktop, add this configuration to your Claude Desktop config file:
Edit ~/Library/Application Support/Claude/claude_desktop_config.json
:
{ "mcpServers": { "gemini-deepsearch": { "command": "uvx", "args": ["gemini-deepsearch-mcp"], "env": { "GEMINI_API_KEY": "your-gemini-api-key-here" }, "timeout": 180000 } } }
Edit %APPDATA%/Claude/claude_desktop_config.json
:
{ "mcpServers": { "gemini-deepsearch": { "command": "uvx", "args": ["gemini-deepsearch-mcp"], "env": { "GEMINI_API_KEY": "your-gemini-api-key-here" }, "timeout": 180000 } } }
Edit ~/.config/claude/claude_desktop_config.json
:
{ "mcpServers": { "gemini-deepsearch": { "command": "uvx", "args": ["gemini-deepsearch-mcp"], "env": { "GEMINI_API_KEY": "your-gemini-api-key-here" }, "timeout": 180000 } } }
Important:
your-gemini-api-key-here
with your actual Gemini API keyMCP error -32001: Request timed out
For development or if you prefer to run from source:
{ "mcpServers": { "gemini-deepsearch": { "command": "uv", "args": ["run", "python", "main.py"], "cwd": "/path/to/gemini-deepsearch-mcp", "env": { "GEMINI_API_KEY": "your-gemini-api-key-here" } } } }
Replace /path/to/gemini-deepsearch-mcp
with the actual absolute path to your project directory.
Once configured, you can use the deep_search
tool in Claude Desktop by asking questions like:
The deep search agent is from the Gemini Fullstack LangGraph Quickstart repository.
MIT