Gemini Context Management
STDIOMCP server leveraging Gemini's 2M token context window for context management and caching.
MCP server leveraging Gemini's 2M token context window for context management and caching.
A powerful MCP (Model Context Protocol) server implementation that leverages Gemini's capabilities for context management and caching. This server maximizes the value of Gemini's 2M token context window while providing tools for efficient caching of large contexts.
# Clone the repository git clone https://github.com/ogoldberg/gemini-context-mcp-server cd gemini-context-mcp-server # Install dependencies npm install # Copy environment variables example cp .env.example .env # Add your Gemini API key to .env file # GEMINI_API_KEY=your_api_key_here
# Build the server npm run build # Start the server node dist/mcp-server.js
This MCP server can be integrated with various MCP-compatible clients:
For detailed integration instructions with each client, see the MCP Client Configuration Guide in the MCP documentation.
Use our simplified client installation commands:
# Install and configure for Claude Desktop npm run install:claude # Install and configure for Cursor npm run install:cursor # Install and configure for VS Code npm run install:vscode
Each command sets up the appropriate configuration files and provides instructions for completing the integration.
Start the server:
node dist/mcp-server.js
Interact using the provided test scripts:
# Test basic context management node test-gemini-context.js # Test caching features node test-gemini-api-cache.js
import { GeminiContextServer } from './src/gemini-context-server.js'; async function main() { // Create server instance const server = new GeminiContextServer(); // Generate a response in a session const sessionId = "user-123"; const response = await server.processMessage(sessionId, "What is machine learning?"); console.log("Response:", response); // Ask a follow-up in the same session (maintains context) const followUp = await server.processMessage(sessionId, "What are popular algorithms?"); console.log("Follow-up:", followUp); } main();
// Custom configuration const config = { gemini: { apiKey: process.env.GEMINI_API_KEY, model: 'gemini-2.0-pro', temperature: 0.2, maxOutputTokens: 1024, }, server: { sessionTimeoutMinutes: 30, maxTokensPerSession: 1000000 } }; const server = new GeminiContextServer(config);
// Create a cache for large system instructions const cacheName = await server.createCache( 'Technical Support System', 'You are a technical support assistant for a software company...', 7200 // 2 hour TTL ); // Generate content using the cache const response = await server.generateWithCache( cacheName, 'How do I reset my password?' ); // Clean up when done await server.deleteCache(cacheName);
This server implements the Model Context Protocol (MCP), making it compatible with tools like Cursor or other AI-enhanced development environments.
Context Management Tools:
generate_text
- Generate text with contextget_context
- Get current context for a sessionclear_context
- Clear session contextadd_context
- Add specific context entriessearch_context
- Find relevant context semanticallyCaching Tools:
mcp_gemini_context_create_cache
- Create a cache for large contextsmcp_gemini_context_generate_with_cache
- Generate with cached contextmcp_gemini_context_list_caches
- List all available cachesmcp_gemini_context_update_cache_ttl
- Update cache TTLmcp_gemini_context_delete_cache
- Delete a cacheWhen used with Cursor, you can connect via the MCP configuration:
{ "name": "gemini-context", "version": "1.0.0", "description": "Gemini context management and caching MCP server", "entrypoint": "dist/mcp-server.js", "capabilities": { "tools": true }, "manifestPath": "mcp-manifest.json", "documentation": "README-MCP.md" }
For detailed usage instructions for MCP tools, see README-MCP.md.
Create a .env
file with these options:
# Required GEMINI_API_KEY=your_api_key_here GEMINI_MODEL=gemini-2.0-flash # Optional - Model Settings GEMINI_TEMPERATURE=0.7 GEMINI_TOP_K=40 GEMINI_TOP_P=0.9 GEMINI_MAX_OUTPUT_TOKENS=2097152 # Optional - Server Settings MAX_SESSIONS=50 SESSION_TIMEOUT_MINUTES=120 MAX_MESSAGE_LENGTH=1000000 MAX_TOKENS_PER_SESSION=2097152 DEBUG=false
# Build TypeScript files npm run build # Run in development mode with auto-reload npm run dev # Run tests npm test
MIT