EnrichB2B LinkedIn Integration
STDIOTemplate server implementing Model Context Protocol with OpenAI, Anthropic, and EnrichB2B integration.
Template server implementing Model Context Protocol with OpenAI, Anthropic, and EnrichB2B integration.
A template server implementing the Model Context Protocol (MCP) with OpenAI, Anthropic, and EnrichB2B integration.
python -m venv venv source venv/bin/activate # On Windows: venv\Scripts\activate
pip install -r requirements.txt
cp .env.example .env # Edit .env with your API keys and configuration
Development mode:
python server.py
Or using MCP CLI:
mcp dev server.py
.
├── .env.example # Template for environment variables
├── .gitignore # Git ignore rules
├── README.md # This file
├── requirements.txt # Python dependencies
├── enrichb2b.py # EnrichB2B API client
└── server.py # MCP server implementation
config://app
- Get server configurationget_profile_details
- Get LinkedIn profile informationget_contact_activities
- Get LinkedIn user's recent activities and postsgpt4_completion
- Generate text using GPT-4claude_completion
- Generate text using Claudeanalysis_prompt
- Template for text analysisGet detailed information about a LinkedIn profile:
result = await get_profile_details( linkedin_url="https://www.linkedin.com/in/username", include_company_details=True, include_followers_count=True )
Get recent activities and posts from a LinkedIn profile:
result = await get_contact_activities( linkedin_url="https://www.linkedin.com/in/username", pages=1, # Number of pages (1-50) comments_per_post=1, # Comments per post (0-50) likes_per_post=None # Likes per post (0-50) )
To add new features:
@mcp.tool()
decorator@mcp.resource()
decorator@mcp.prompt()
decoratorMIT