DolphinScheduler Workflow Management
HTTP-SSESTDIOMCP server allowing AI agents to interact with DolphinScheduler through standardized protocol.
MCP server allowing AI agents to interact with DolphinScheduler through standardized protocol.
A Model Context Protocol (MCP) server for Apache DolphinScheduler, allowing AI agents to interact with DolphinScheduler through a standardized protocol.
DolphinScheduler MCP provides a FastMCP-based server that exposes DolphinScheduler's REST API as a collection of tools that can be used by AI agents. The server acts as a bridge between AI models and DolphinScheduler, enabling AI-driven workflow management.
pip install dolphinscheduler-mcp
DOLPHINSCHEDULER_API_URL
: URL for the DolphinScheduler API (default: http://localhost:12345/dolphinscheduler)DOLPHINSCHEDULER_API_KEY
: API token for authentication with the DolphinScheduler APIDOLPHINSCHEDULER_MCP_HOST
: Host to bind the MCP server (default: 0.0.0.0)DOLPHINSCHEDULER_MCP_PORT
: Port to bind the MCP server (default: 8089)DOLPHINSCHEDULER_MCP_LOG_LEVEL
: Logging level (default: INFO)Start the server using the command-line interface:
ds-mcp --host 0.0.0.0 --port 8089
from dolphinscheduler_mcp.server import run_server # Start the server run_server(host="0.0.0.0", port=8089)
The DolphinScheduler MCP Server provides tools for:
from mcp_client import MCPClient # Connect to the MCP server client = MCPClient("http://localhost:8089/mcp") # Get a list of projects response = await client.invoke_tool("get-project-list") # Create a new project response = await client.invoke_tool( "create-project", {"name": "My AI Project", "description": "Project created by AI"} )
Apache License 2.0