
Debugg AI
STDIOOfficialAI-driven browser automation and E2E test server for web applications via natural language.
AI-driven browser automation and E2E test server for web applications via natural language.
AI-powered development and testing toolkit implementing the Model Context Protocol (MCP), designed to give AI agents comprehensive testing, debugging, and code analysis capabilities.
Transform your development workflow with:
**Task Completed**
- Duration: 86.80 seconds
- Final Result: Successfully completed the task of signing up and logging into the account with the email '[email protected]'.
- Status: Success
Watch a more in-depth, Full Use Case Demo
Create a free account at debugg.ai and generate your API key.
Option A: NPX (Recommended)
npx -y @debugg-ai/debugg-ai-mcp
Option B: Docker
docker run -i --rm --init \ -e DEBUGGAI_API_KEY=your_api_key \ quinnosha/debugg-ai-mcp
debugg_ai_test_page_changes
- Run browser tests with natural language descriptionsdebugg_ai_create_test_suite
- Create organized test suites for featuresdebugg_ai_create_commit_suite
- Generate tests based on git commitsdebugg_ai_get_test_status
- Monitor test execution and resultsdebugg_ai_list_tests
- List all E2E tests with filtering and paginationdebugg_ai_list_test_suites
- List all test suites with filtering optionsdebugg_ai_list_commit_suites
- List all commit-based test suitesdebugg_ai_start_live_session
- Start a live browser session with real-time monitoringdebugg_ai_stop_live_session
- Stop an active live sessiondebugg_ai_get_live_session_status
- Get the current status of a live sessiondebugg_ai_get_live_session_logs
- Retrieve console and network logs from a live sessiondebugg_ai_get_live_session_screenshot
- Capture screenshots from an active live sessionAdd this to your MCP settings file:
{ "mcpServers": { "debugg-ai-mcp": { "command": "npx", "args": ["-y", "@debugg-ai/debugg-ai-mcp"], "env": { "DEBUGGAI_API_KEY": "your_api_key_here" } } } }
# Required DEBUGGAI_API_KEY=your_api_key # Optional (with sensible defaults) DEBUGGAI_LOCAL_PORT=3000 # Your app's port DEBUGGAI_LOCAL_REPO_NAME=your-org/repo # GitHub repo name DEBUGGAI_LOCAL_REPO_PATH=/path/to/project # Project directory
"Test the user login flow on my app running on port 3000"
"What frameworks and languages are used in my codebase?"
"Show me all high-priority issues in my project"
"Generate test coverage for the authentication module"
# Install dependencies npm install # Run tests npm test # Build project npm run build # Start server locally node dist/index.js
debugg-ai-mcp/
├── config/ # Configuration management
├── tools/ # 14 MCP tool definitions
├── handlers/ # Tool implementation logic
├── services/ # DebuggAI API integration
├── utils/ # Shared utilities & logging
├── types/ # TypeScript type definitions
├── __tests__/ # Comprehensive test suite
└── index.ts # Main server entry point
This project uses automated publishing to NPM. Here's how it works:
main
triggers automatic NPM publishing# Bump version locally npm run version:patch # 1.0.15 → 1.0.16 npm run version:minor # 1.0.15 → 1.1.0 npm run version:major # 1.0.15 → 2.0.0 # Check package contents npm run publish:check
See .github/PUBLISHING_SETUP.md
for complete setup instructions.
Apache-2.0 License © 2025 DebuggAI
Made with ❤️ in San Francisco