icon for mcp server

Memory Service

STDIO

Semantic memory service for Claude Desktop using ChromaDB and sentence transformers.

MCP Memory Service

License: Apache 2.0 GitHub stars Production Ready

Works with Claude Works with Cursor MCP Protocol Multi-Client

Universal MCP memory service providing semantic memory search and persistent storage for AI assistants. Works with Claude Desktop, VS Code, Cursor, Continue, and 13+ AI applications with SQLite-vec for fast local search and Cloudflare for global distribution.

MCP Memory Service

🚀 Quick Start (2 minutes)

Universal Installer (Recommended)

# Clone and install with automatic platform detection git clone https://github.com/doobidoo/mcp-memory-service.git cd mcp-memory-service python install.py

Docker (Fastest)

# For MCP protocol (Claude Desktop) docker-compose up -d # For HTTP API (Web Dashboard) docker-compose -f docker-compose.http.yml up -d

Smithery (Claude Desktop)

# Auto-install for Claude Desktop npx -y @smithery/cli install @doobidoo/mcp-memory-service --client claude

⚠️ First-Time Setup Expectations

On your first run, you'll see some warnings that are completely normal:

  • "WARNING: Failed to load from cache: No snapshots directory" - The service is checking for cached models (first-time setup)
  • "WARNING: Using TRANSFORMERS_CACHE is deprecated" - Informational warning, doesn't affect functionality
  • Model download in progress - The service automatically downloads a ~25MB embedding model (takes 1-2 minutes)

These warnings disappear after the first successful run. The service is working correctly! For details, see our First-Time Setup Guide.

🐍 Python 3.13 Compatibility Note

sqlite-vec may not have pre-built wheels for Python 3.13 yet. If installation fails:

  • The installer will automatically try multiple installation methods
  • Consider using Python 3.12 for the smoothest experience: brew install [email protected]
  • Alternative: Use ChromaDB backend with --storage-backend chromadb
  • See Troubleshooting Guide for details

📚 Complete Documentation

👉 Visit our comprehensive Wiki for detailed guides:

🚀 Setup & Installation

🧠 Advanced Topics

🔧 Help & Reference

✨ Key Features

🧠 Intelligent Memory Management

  • Semantic search with vector embeddings
  • Natural language time queries ("yesterday", "last week")
  • Tag-based organization with smart categorization
  • Memory consolidation with dream-inspired algorithms

🔗 Universal Compatibility

  • Claude Desktop - Native MCP integration
  • Claude Code - Memory-aware development with hooks
  • VS Code, Cursor, Continue - IDE extensions
  • 13+ AI applications - REST API compatibility

💾 Flexible Storage

  • SQLite-vec - Fast local storage (recommended)
  • ChromaDB - Multi-client collaboration
  • Cloudflare - Global edge distribution
  • Automatic backups and synchronization

🚀 Production Ready

  • Cross-platform - Windows, macOS, Linux
  • Service installation - Auto-start background operation
  • HTTPS/SSL - Secure connections
  • Docker support - Easy deployment

💡 Basic Usage

# Store a memory uv run memory store "Fixed race condition in authentication by adding mutex locks" # Search for relevant memories uv run memory recall "authentication race condition" # Search by tags uv run memory search --tags python debugging # Check system health uv run memory health

🔧 Configuration

Claude Desktop Integration

Add to your Claude Desktop config (~/.claude/config.json):

{ "mcpServers": { "memory": { "command": "uv", "args": ["--directory", "/path/to/mcp-memory-service", "run", "memory", "server"], "env": { "MCP_MEMORY_STORAGE_BACKEND": "sqlite_vec" } } } }

Environment Variables

# Storage backend (sqlite_vec recommended) export MCP_MEMORY_STORAGE_BACKEND=sqlite_vec # Enable HTTP API export MCP_HTTP_ENABLED=true export MCP_HTTP_PORT=8000 # Security export MCP_API_KEY="your-secure-key"

🏗️ Architecture

┌─────────────────┐    ┌─────────────────┐    ┌─────────────────┐
│   AI Clients    │    │  MCP Protocol   │    │ Storage Backend │
│                 │    │                 │    │                 │
│ • Claude Desktop│◄──►│ • Memory Store  │◄──►│ • SQLite-vec    │
│ • Claude Code   │    │ • Semantic      │    │ • ChromaDB      │
│ • VS Code       │    │   Search        │    │ • Cloudflare    │
│ • Cursor        │    │ • Tag System    │    │                 │
└─────────────────┘    └─────────────────┘    └─────────────────┘

🛠️ Development

Project Structure

mcp-memory-service/
├── src/mcp_memory_service/    # Core application
│   ├── models/                # Data models
│   ├── storage/               # Storage backends
│   ├── web/                   # HTTP API & dashboard
│   └── server.py              # MCP server
├── scripts/                   # Utilities & installation
├── tests/                     # Test suite
└── tools/docker/              # Docker configuration

Contributing

  1. Fork the repository
  2. Create a feature branch
  3. Make your changes with tests
  4. Submit a pull request

See CONTRIBUTING.md for detailed guidelines.

🆘 Support

📊 In Production

Real-world metrics from active deployments:

  • 750+ memories stored and actively used
  • <500ms response time for semantic search
  • 65% token reduction in Claude Code sessions
  • 96.7% faster context setup (15min → 30sec)
  • 100% knowledge retention across sessions

🏆 Recognition

  • Smithery Verified MCP Server
  • Glama AI Featured AI Tool
  • Production-tested across 13+ AI applications
  • Community-driven with real-world feedback and improvements

📄 License

Apache License 2.0 - see LICENSE for details.


Ready to supercharge your AI workflow? 🚀

👉 Start with our Installation Guide or explore the Wiki for comprehensive documentation.

Transform your AI conversations into persistent, searchable knowledge that grows with you.

Related MCP Server Picks for You

Be the First to Experience MCP Now