Chat Analysis
STDIOEnables semantic analysis of chat conversations through vector embeddings and knowledge graphs.
Enables semantic analysis of chat conversations through vector embeddings and knowledge graphs.
A Model Context Protocol (MCP) server that enables semantic analysis of chat conversations through vector embeddings and knowledge graphs. This server provides tools for analyzing chat data, performing semantic search, extracting concepts, and analyzing conversation patterns.
# Install the package pip install mcp-chat-analysis-server # Set up configuration cp config.example.yml config.yml # Edit config.yml with your database settings # Run the server python -m mcp_chat_analysis.server
Add to your claude_desktop_config.json
:
{ "mcpServers": { "chat-analysis": { "command": "python", "args": ["-m", "mcp_chat_analysis.server"], "env": { "QDRANT_URL": "http://localhost:6333", "NEO4J_URL": "bolt://localhost:7687", "NEO4J_USER": "neo4j", "NEO4J_PASSWORD": "your-password" } } } }
Import and analyze chat conversations
{ "source_path": "/path/to/export.zip", "format": "openai_native" # or html, markdown, json }
Search conversations by semantic similarity
{ "query": "machine learning applications", "limit": 10, "min_score": 0.7 }
Analyze conversation metrics
{ "conversation_id": "conv-123", "metrics": [ "message_frequency", "response_times", "topic_diversity" ] }
Extract and analyze concepts
{ "conversation_id": "conv-123", "min_relevance": 0.5, "max_concepts": 10 }
See ARCHITECTURE.md for detailed diagrams and documentation of:
pip install mcp-chat-analysis-server
# Using Docker (recommended) docker compose up -d
cp .env.example .env # Edit .env with your settings
git clone https://github.com/rebots-online/mcp-chat-analysis-server.git cd mcp-chat-analysis-server
pip install -e ".[dev]"
pytest tests/
See CONTRIBUTING.md for guidelines.
MIT License - See LICENSE file for details.