
AWS YOLO
STDIOIntelligent MCP server routing platform using LLM analysis and vector similarity matching for AWS operations
Intelligent MCP server routing platform using LLM analysis and vector similarity matching for AWS operations
An open-source, locally-hosted AI platform that intelligently routes user prompts to the most appropriate MCP (Model Context Protocol) servers using LLM analysis and vector store similarity matching.
Watch MCP AWS YOLO in action - intelligent routing from user prompts to AWS operations (it's quite slow because the local LLM runs on CPU):
Demo shows: Natural language prompt → Intelligent server selection → AWS S3 bucket creation
awslabs.aws-api-mcp-server
aws_config.json
call_aws
tool with aws s3 mb
commandBefore setting up MCP AWS YOLO, ensure you have the following installed:
curl -LsSf https://astral.sh/uv/install.sh | sh
# Install Ollama curl -fsSL https://ollama.com/install.sh | sh
pip install awscli aws configure
{{env:param_name}}
placeholders in MCP server configurationsaws_config.json
) for all AWS-related parametersMCP AWS YOLO acts as an intelligent routing layer between AI clients and MCP servers, combining semantic search with LLM-powered decision making.
graph TB A[AI Client<br/>Claude/ChatGPT] --> B[MCP AWS YOLO Server] B --> C[LLM Analysis<br/>Ollama/gpt-oss:20b] B --> D[Vector Store<br/>Qdrant + all-minilm] B --> E[MCP Client Manager] C --> F[Intent Analysis] D --> G[Semantic Search] F --> H[Server Selection] G --> H H --> E E --> I[AWS API MCP Server] E --> J[AWS Knowledge MCP Server] E --> K[Lambda MCP Server] E --> L[DynamoDB MCP Server] E --> M[Other MCP Servers...] I --> N[AWS Services<br/>S3, EC2, etc.] J --> O[AWS Documentation] K --> P[Lambda Functions] L --> Q[DynamoDB Tables] style B fill:#e1f5fe style C fill:#f3e5f5 style D fill:#e8f5e8 style E fill:#fff3e0
git clone <repository-url> cd mcp-aws-yolo
docker-compose up -d
uv sync
Downloads models and indexes MCP servers:
uv run python setup.py
Add this configuration to your Claude Desktop MCP settings:
File Location:
~/Library/Application Support/Claude/claude_desktop_config.json
%APPDATA%\Claude\claude_desktop_config.json
Configuration:
{ "mcpServers": { "aws-yolo": { "command": "uv", "args": [ "--directory", "{absolute_path_to_aws-yolo}/mcp-aws-yolo", "run", "python", "-m", "src.mcp_aws_yolo.main" ] } } }
Note: Replace the {absolute_path_to_aws-yolo}
path with your actual project location.
For other MCP clients (ChatGPT, etc.), use similar configuration with:
uv
["--directory", "/path/to/mcp-aws-yolo", "run", "python", "-m", "src.mcp_aws_yolo.main"]
Try this sample prompt to test the system:
create a s3 bucket named brian-yolo-000000, use aws-yolo
Create a .env
file or set these environment variables:
Variable | Description | Default |
---|---|---|
MCP_AWS_YOLO_LLM_MODEL | LLM model to use | ollama/gpt-oss:20b |
MCP_AWS_YOLO_LLM_BASE_URL | LLM API endpoint | http://localhost:11434 |
MCP_AWS_YOLO_QDRANT_URL | Qdrant vector store URL | http://localhost:6333 |
MCP_AWS_YOLO_EMBEDDING_MODEL | Ollama embedding model | all-minilm |
MCP_AWS_YOLO_LOG_LEVEL | Logging level | INFO |
The system uses aws_config.json
for AWS-specific settings:
{ "aws_profile": "default", "aws_region": "ap-southeast-1", "read_only_mode": "false", "require_consent": "false", "enable_telemetry": "false" }
Key Settings:
require_consent
: Set to "false" to avoid elicitation errorsread_only_mode
: Set to "true" for safe explorationaws_region
: Your preferred AWS regionThe system includes a comprehensive registry of 53 AWS MCP servers in mcp_registry.json
:
No. | Server Name | Category |
---|---|---|
1 | AWS API MCP Server | Development |
2 | AWS Knowledge MCP Server | Documentation |
3 | Aurora DSQL MCP Server | Data |
4 | MySQL MCP Server | Data |
5 | PostgreSQL MCP Server | Data |
6 | AWS Bedrock Data Automation MCP Server | AI |
7 | CloudWatch Application Signals MCP Server | Development |
8 | CloudWatch MCP Server | Development |
9 | AWS Data Processing MCP Server | Data |
10 | CDK MCP Server | Development |
11 | Lambda Tool MCP Server | Development |
12 | EKS MCP Server | Development |
13 | CloudFormation MCP Server | Development |
14 | Terraform MCP Server | Development |
15 | ECS MCP Server | Development |
16 | Bedrock KB Retrieval MCP Server | AI |
17 | DocumentDB MCP Server | Data |
18 | DynamoDB MCP Server | Data |
19 | ElastiCache/MemoryDB for Valkey MCP Server | Data |
20 | ElastiCache for Memcached MCP Server | Data |
21 | Code Documentation Generation MCP Server | Development |
22 | Core MCP Server | Development |
23 | Cost Explorer MCP Server | Development |
24 | Finch MCP Server | Development |
25 | Frontend MCP Server | Development |
26 | Git Repo Research MCP Server | Development |
27 | ElastiCache MCP Server | Data |
28 | IAM MCP Server | Development |
29 | MCP Lambda Handler Module | Development |
30 | Nova Canvas MCP Server | AI |
31 | OpenAPI MCP Server | Development |
32 | Prometheus MCP Server | Development |
33 | Redshift MCP Server | Data |
34 | S3 Tables MCP Server | Data |
35 | Step Functions Tool MCP Server | Development |
36 | Synthetic Data MCP Server | Data |
37 | Timestream for InfluxDB MCP Server | Data |
38 | Kendra Index MCP Server | AI |
39 | Keyspaces MCP Server | Data |
40 | MQ MCP Server | Development |
41 | Neptune MCP Server | Data |
42 | Q Business Anonymous MCP Server | AI |
43 | Rekognition MCP Server | AI |
44 | SNS/SQS MCP Server | Development |
45 | Diagram MCP Server | Development |
46 | HealthOmics MCP Server | Data |
47 | Location Service MCP Server | Development |
48 | Serverless MCP Server | Development |
49 | Support MCP Server | Development |
50 | Q Index MCP Server | AI |
51 | Documentation MCP Server | Documentation |
52 | MSK MCP Server | Data |
53 | Pricing MCP Server | Development |
Categories Summary:
uv sync
docker-compose up -d
uv run python setup.py
uv run python -m src.mcp_aws_yolo.main
mcp_registry.json
to add server configurationuv run python setup.py
get_intention
to verify discovery# Install test dependencies uv add --dev pytest pytest-asyncio # Run tests pytest tests/
The compose.yml
includes infrastructure services:
The MCP server runs separately via uv
for flexibility and development.
"Elicitation not supported" errors
require_consent: "false"
in aws_config.json
Vector dimension mismatch
uv run python setup.py
to recreate collectionsAWS permission errors
aws sts get-caller-identity
Model not found errors
ollama list
ollama pull gpt-oss:20b
Test the system health:
# Check if services are running curl http://localhost:6333/healthz # Qdrant curl http://localhost:11434/api/tags # Ollama
MIT License - see LICENSE file for details