icon for mcp server

AWS YOLO

STDIO

Intelligent MCP server routing platform using LLM analysis and vector similarity matching for AWS operations

MCP AWS YOLO

An open-source, locally-hosted AI platform that intelligently routes user prompts to the most appropriate MCP (Model Context Protocol) servers using LLM analysis and vector store similarity matching.

Demo

Watch MCP AWS YOLO in action - intelligent routing from user prompts to AWS operations (it's quite slow because the local LLM runs on CPU):

MCP AWS YOLO demo

Demo shows: Natural language prompt → Intelligent server selection → AWS S3 bucket creation

What you'll see in the demo:

  1. User Query: "create a s3 bucket named brian-yolo-000000, use aws-yolo"
  2. Intent Analysis: MCP AWS YOLO analyzes the prompt using LLM + vector search
  3. Server Selection: Automatically routes to awslabs.aws-api-mcp-server
  4. Parameter Resolution: Resolves AWS credentials and region from aws_config.json
  5. Tool Execution: Executes call_aws tool with aws s3 mb command
  6. Result: S3 bucket created successfully with detailed response

Prerequisites

Before setting up MCP AWS YOLO, ensure you have the following installed:

Required

  • Python 3.10+ - Core runtime environment
  • uv package manager - Fast Python package manager
    curl -LsSf https://astral.sh/uv/install.sh | sh
  • Docker & Docker Compose - For infrastructure services (Qdrant vector database)
  • Ollama - Local LLM inference server
    # Install Ollama curl -fsSL https://ollama.com/install.sh | sh

AWS Prerequisites (for AWS MCP servers)

  • AWS CLI configured with credentials
    pip install awscli aws configure
  • Valid AWS Account with appropriate IAM permissions
  • AWS Profile configured (default or named profile)

Optional

  • Git - For cloning and version control

Features

🎯 Intelligent Server Routing

  • Automatic route to the best matched MCP server using hybrid search
    • Vector Store Search: Semantic similarity matching using Qdrant and all-minilm embeddings
    • LLM Validation: GPT-OSS 20B model analyzes candidates and selects the optimal server
    • Confidence Scoring: Each match includes similarity scores and LLM confidence ratings
    • Fallback Logic: Expanded keyword searches when initial queries return no results

⚙️ Automatic Parameter Resolution

  • Automatic resolve parameters when running MCP server using aws_config.json
    • Template Processing: Automatically replaces {{env:param_name}} placeholders in MCP server configurations
    • AWS Configuration: Centralized config file (aws_config.json) for all AWS-related parameters
    • Environment Management: Supports multiple AWS profiles, regions, and security settings
    • Empty Parameter Filtering: Automatically removes empty arguments and environment variables

Architecture

MCP AWS YOLO acts as an intelligent routing layer between AI clients and MCP servers, combining semantic search with LLM-powered decision making.

Architecture Diagram

graph TB A[AI Client<br/>Claude/ChatGPT] --> B[MCP AWS YOLO Server] B --> C[LLM Analysis<br/>Ollama/gpt-oss:20b] B --> D[Vector Store<br/>Qdrant + all-minilm] B --> E[MCP Client Manager] C --> F[Intent Analysis] D --> G[Semantic Search] F --> H[Server Selection] G --> H H --> E E --> I[AWS API MCP Server] E --> J[AWS Knowledge MCP Server] E --> K[Lambda MCP Server] E --> L[DynamoDB MCP Server] E --> M[Other MCP Servers...] I --> N[AWS Services<br/>S3, EC2, etc.] J --> O[AWS Documentation] K --> P[Lambda Functions] L --> Q[DynamoDB Tables] style B fill:#e1f5fe style C fill:#f3e5f5 style D fill:#e8f5e8 style E fill:#fff3e0

Component Flow

  1. Intent Analysis: User prompt → LLM analysis → Extract keywords and intent
  2. Vector Search: Semantic similarity search across MCP server descriptions
  3. Server Selection: LLM validates candidates and selects best match
  4. Tool Execution: Connect to selected MCP server and execute tool
  5. Result Processing: Format and return results to AI client

Quick Start

1. Clone and Setup

git clone <repository-url> cd mcp-aws-yolo

2. Start Infrastructure Services

docker-compose up -d

3. Install Dependencies

uv sync

4. Run Initial Setup

Downloads models and indexes MCP servers:

uv run python setup.py

Adding AWS-YOLO to AI Clients

Claude Desktop Configuration

Add this configuration to your Claude Desktop MCP settings:

File Location:

  • macOS: ~/Library/Application Support/Claude/claude_desktop_config.json
  • Windows: %APPDATA%\Claude\claude_desktop_config.json

Configuration:

{ "mcpServers": { "aws-yolo": { "command": "uv", "args": [ "--directory", "{absolute_path_to_aws-yolo}/mcp-aws-yolo", "run", "python", "-m", "src.mcp_aws_yolo.main" ] } } }

Note: Replace the {absolute_path_to_aws-yolo} path with your actual project location.

Other MCP Clients

For other MCP clients (ChatGPT, etc.), use similar configuration with:

  • Command: uv
  • Args: ["--directory", "/path/to/mcp-aws-yolo", "run", "python", "-m", "src.mcp_aws_yolo.main"]

Usage Examples

Sample Prompt

Try this sample prompt to test the system:

create a s3 bucket named brian-yolo-000000, use aws-yolo

More Example Prompts

  • S3 Operations: "List all S3 buckets in my account, use aws-yolo"
  • Lambda Management: "Show me all Lambda functions in us-east-1, use aws-yolo"
  • Documentation: "What are the best practices for S3 security?, use aws-yolo"
  • EC2 Instances: "Show me running EC2 instances, use aws-yolo"

Configuration

Environment Variables

Create a .env file or set these environment variables:

VariableDescriptionDefault
MCP_AWS_YOLO_LLM_MODELLLM model to useollama/gpt-oss:20b
MCP_AWS_YOLO_LLM_BASE_URLLLM API endpointhttp://localhost:11434
MCP_AWS_YOLO_QDRANT_URLQdrant vector store URLhttp://localhost:6333
MCP_AWS_YOLO_EMBEDDING_MODELOllama embedding modelall-minilm
MCP_AWS_YOLO_LOG_LEVELLogging levelINFO

AWS Configuration

The system uses aws_config.json for AWS-specific settings:

{ "aws_profile": "default", "aws_region": "ap-southeast-1", "read_only_mode": "false", "require_consent": "false", "enable_telemetry": "false" }

Key Settings:

  • require_consent: Set to "false" to avoid elicitation errors
  • read_only_mode: Set to "true" for safe exploration
  • aws_region: Your preferred AWS region

MCP Server Registry

The system includes a comprehensive registry of 53 AWS MCP servers in mcp_registry.json:

No.Server NameCategory
1AWS API MCP ServerDevelopment
2AWS Knowledge MCP ServerDocumentation
3Aurora DSQL MCP ServerData
4MySQL MCP ServerData
5PostgreSQL MCP ServerData
6AWS Bedrock Data Automation MCP ServerAI
7CloudWatch Application Signals MCP ServerDevelopment
8CloudWatch MCP ServerDevelopment
9AWS Data Processing MCP ServerData
10CDK MCP ServerDevelopment
11Lambda Tool MCP ServerDevelopment
12EKS MCP ServerDevelopment
13CloudFormation MCP ServerDevelopment
14Terraform MCP ServerDevelopment
15ECS MCP ServerDevelopment
16Bedrock KB Retrieval MCP ServerAI
17DocumentDB MCP ServerData
18DynamoDB MCP ServerData
19ElastiCache/MemoryDB for Valkey MCP ServerData
20ElastiCache for Memcached MCP ServerData
21Code Documentation Generation MCP ServerDevelopment
22Core MCP ServerDevelopment
23Cost Explorer MCP ServerDevelopment
24Finch MCP ServerDevelopment
25Frontend MCP ServerDevelopment
26Git Repo Research MCP ServerDevelopment
27ElastiCache MCP ServerData
28IAM MCP ServerDevelopment
29MCP Lambda Handler ModuleDevelopment
30Nova Canvas MCP ServerAI
31OpenAPI MCP ServerDevelopment
32Prometheus MCP ServerDevelopment
33Redshift MCP ServerData
34S3 Tables MCP ServerData
35Step Functions Tool MCP ServerDevelopment
36Synthetic Data MCP ServerData
37Timestream for InfluxDB MCP ServerData
38Kendra Index MCP ServerAI
39Keyspaces MCP ServerData
40MQ MCP ServerDevelopment
41Neptune MCP ServerData
42Q Business Anonymous MCP ServerAI
43Rekognition MCP ServerAI
44SNS/SQS MCP ServerDevelopment
45Diagram MCP ServerDevelopment
46HealthOmics MCP ServerData
47Location Service MCP ServerDevelopment
48Serverless MCP ServerDevelopment
49Support MCP ServerDevelopment
50Q Index MCP ServerAI
51Documentation MCP ServerDocumentation
52MSK MCP ServerData
53Pricing MCP ServerDevelopment

Categories Summary:

  • AI & Machine Learning: 7 servers
  • Data & Database: 17 servers
  • Development & Infrastructure: 27 servers
  • Documentation: 2 servers

Development

Local Development Setup

  1. Install dependencies:
uv sync
  1. Start infrastructure:
docker-compose up -d
  1. Run setup:
uv run python setup.py
  1. Start development server:
uv run python -m src.mcp_aws_yolo.main

Adding New MCP Servers

  1. Edit mcp_registry.json to add server configuration
  2. Run setup to re-index: uv run python setup.py
  3. Test with get_intention to verify discovery

Testing (WIP)

# Install test dependencies uv add --dev pytest pytest-asyncio # Run tests pytest tests/

Docker Services

The compose.yml includes infrastructure services:

  • qdrant: Vector database (port 6333)

The MCP server runs separately via uv for flexibility and development.

Troubleshooting

Common Issues

  1. "Elicitation not supported" errors

    • Set require_consent: "false" in aws_config.json
  2. Vector dimension mismatch

    • Run uv run python setup.py to recreate collections
  3. AWS permission errors

    • Check AWS CLI configuration: aws sts get-caller-identity
    • Verify IAM permissions for intended operations
  4. Model not found errors

    • Ensure Ollama is running: ollama list
    • Download required models: ollama pull gpt-oss:20b

Health Check

Test the system health:

# Check if services are running curl http://localhost:6333/healthz # Qdrant curl http://localhost:11434/api/tags # Ollama

Contributing

  1. Fork the repository
  2. Create a feature branch
  3. Make your changes
  4. Add tests if applicable
  5. Submit a pull request

License

MIT License - see LICENSE file for details

Support

Related Projects

Be the First to Experience MCP Now