APISIX Model Context Protocol
STDIOOfficialBridge large language models with APISIX Admin API for natural language-based resource management.
Bridge large language models with APISIX Admin API for natural language-based resource management.
APISIX Model Context Protocol (MCP) server is used to bridge large language models (LLMs) with the APISIX Admin API. It aims to enable natural language-based interaction for viewing and managing resources in APISIX through MCP-compatible AI clients.
https://github.com/user-attachments/assets/081e878c-225e-4ff8-a9c5-5813f4784cfe
get_resource
: Retrieve resources by type (routes, services, upstreams, etc.)delete_resource
: Remove resources by IDsend_request_to_gateway
: Send a request or multiple requests to the APISIX gatewaycreate_route
/update_route
/delete_route
: Manage routescreate_service
/update_service
/delete_service
: Manage servicescreate_upstream
/update_upstream
/delete_upstream
: Manage upstreamcreate_ssl
/update_ssl
/delete_ssl
: Manage SSL certificatescreate_or_update_proto
: Manage protobuf definitionscreate_or_update_stream_route
: Manage stream routesget_all_plugin_names
: Get all available plugin namesget_plugin_info
/get_plugins_by_type
/get_plugin_schema
: Retrieve plugins configurationcreate_plugin_config
/update_plugin_config
: Manage plugin configurationscreate_global_rule
/update_global_rule
: Manage plugin global rulesget_plugin_metadata
/create_or_update_plugin_metadata
/delete_plugin_metadata
: Manage plugin metadataget_secret_by_id
/create_secret
/update_secret
: Manage secretscreate_or_update_consumer
/delete_consumer
: Manage consumersget_credential
/create_or_update_credential
/delete_credential
/: Manage consumer credentialscreate_consumer_group
/delete_consumer_group
: Manage consumer groupsFollow the APISIX Getting Started guide to set up and run APISIX.
To install APISIX Model Context Protocol Server for Claude Desktop automatically via Smithery:
npx -y @smithery/cli install @api7/apisix-mcp --client claude
Configure your AI client (Cursor, Claude, Copilot, etc.) with following settings:
{ "mcpServers": { "apisix-mcp": { "command": "npx", "args": [ "-y", "apisix-mcp" ], "env": { "APISIX_SERVER_HOST": "your-apisix-server-host", "APISIX_SERVER_PORT": "your-apisix-server-port", "APISIX_ADMIN_API_PORT": "your-apisix-admin-api-port", "APISIX_ADMIN_API_PREFIX": "your-apisix-admin-api-prefix", "APISIX_ADMIN_KEY": "your-apisix-api-key" } } } }
First clone the apisix-mcp repository:
git clone https://github.com/api7/apisix-mcp.git cd apisix-mcp
Install the dependencies and build the project:
pnpm install pnpm build
Configure your AI client (Cursor, Claude, Copilot, etc.) with following settings:
{ "mcpServers": { "apisix-mcp": { "command": "node", "args": [ "your-apisix-mcp-path/dist/index.js" ], "env": { "APISIX_SERVER_HOST": "your-apisix-server-host", "APISIX_SERVER_PORT": "your-apisix-server-port", "APISIX_ADMIN_API_PORT": "your-apisix-admin-api-port", "APISIX_ADMIN_API_PREFIX": "your-apisix-admin-api-prefix", "APISIX_ADMIN_KEY": "your-apisix-api-key" } } } }
Variable | Description | Default Value |
---|---|---|
APISIX_SERVER_HOST | Host that have access to your APISIX server | http://127.0.0.1 |
APISIX_SERVER_PORT | APISIX server port | 9080 |
APISIX_ADMIN_API_PORT | Admin API port | 9180 |
APISIX_ADMIN_API_PREFIX | Admin API prefix | /apisix/admin |
APISIX_ADMIN_KEY | Admin API authentication key | edd1c9f034335f136f87ad84b625c8f1 |
To view or modify Admin API configurations in APISIX, refer to the Admin API documentation.
Example: Search Server and Tools
import anthropic import mcp_marketplace as mcpm result_q = mcpm.search(query="apisix mcp", mode="list", page_id=0, count_per_page=100, config_name="deepnlp") # search server by category choose various endpoint result_id = mcpm.search(id="api7/apisix-mcp", mode="list", page_id=0, count_per_page=100, config_name="deepnlp") # search server by id choose various endpoint tools = mcpm.list_tools(id="api7/apisix-mcp", config_name="deepnlp_tool") # Call Claude to Choose Tools Function Calls client = anthropic.Anthropic() response = client.messages.create(model="claude-3-7-sonnet-20250219", max_tokens=1024, tools=tools, messages=[])